The Impacts of Urbanisation and Climate Change on the Urban Thermal Environment in Africa

Abstract

:

1. Introduction

1.1. Global Urbanisation and Climate Change

1.2. Urban Thermal Environment

1.3. Data Analysis and Tools

1.4. Urban Thermal Environment Analysis at Different Scales

1.5. Current Research Status

2. Materials and Methods

2.1. Aim

2.2. Method

3. Results and Discussion

3.1. Study Distribution

3.1.1. Urban Thermal Environment Studies at Regional Scales

3.1.2. Urban Thermal Environment Studies at City-Scales

3.2. Drivers of Changes to the Urban Thermal Environment

3.2.1. Land Use and Land Cover (LULC)

3.2.2. Building Materials

3.2.3. Morphology

3.2.4. Other Factors

3.3. Risks and Solutions

3.3.1. Heat-Related Risks

3.3.2. Solutions

4. Conclusions

Author Contributions

Funding

Data Availability Statement

Acknowledgments

Conflicts of Interest

References

  1. DESA. World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420); United Nations: New York, NY, USA, 2018. [Google Scholar]
  2. Li, G.; Fang, C.; Qi, W. Different effects of human settlements changes on landscape fragmentation in China: Evidence from grid cell. Ecol. Indic. 2021, 129, 107927. [Google Scholar] [CrossRef]
  3. Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [PubMed][Green Version]
  4. Nagendra, H.; Bai, X.; Brondizio, E.S.; Lwasa, S. The urban south and the predicament of global sustainability. Nat. Sustain. 2018, 1, 341–349. [Google Scholar] [CrossRef]
  5. Lin, B.; Zhu, J. Changes in urban air quality during urbanization in China. J. Clean. Prod. 2018, 188, 312–321. [Google Scholar] [CrossRef]
  6. Hoekstra, A.Y.; Buurman, J.; van Ginkel, K.C.H. Urban water security: A review. Environ. Res. Lett. 2018, 13, 053002. [Google Scholar] [CrossRef][Green Version]
  7. Song, X.-P.; Hansen, M.C.; Stehman, S.V.; Potapov, P.V.; Tyukavina, A.; Vermote, E.F.; Townshend, J.R. Global land change from 1982 to 2016. Nature 2018, 560, 639–643. [Google Scholar] [CrossRef] [PubMed]
  8. Newbold, T.; Hudson, L.N.; Hill, S.L.L.; Contu, S.; Lysenko, I.; Senior, R.A.; Börger, L.; Bennett, D.J.; Choimes, A.; Collen, B.; et al. Global effects of land use on local terrestrial biodiversity. Nature 2015, 520, 45–50. [Google Scholar] [CrossRef][Green Version]
  9. Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef][Green Version]
  10. DeFries, R.S.; Rudel, T.; Uriarte, M.; Hansen, M. Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nat. Geosci. 2010, 3, 178. [Google Scholar] [CrossRef]
  11. Haddad, N.M.; Brudvig, L.A.; Clobert, J.; Davies, K.F.; Gonzalez, A.; Holt, R.D.; Lovejoy, T.E.; Sexton, J.O.; Austin, M.P.; Collins, C.D.; et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 2015, 1, e1500052. [Google Scholar] [CrossRef]
  12. Wigginton, N.S.; Fahrenkamp-Uppenbrink, J.; Wible, B.; Malakoff, D. Cities Are the Future; American Association for the Advancement of Science: Washington, DC, USA, 2016. [Google Scholar]
  13. Gollin, D.; Jedwab, R.; Vollrath, D. Urbanization with and without industrialization. J. Econ. Growth 2016, 21, 35–70. [Google Scholar] [CrossRef]
  14. OECD; United Nations Economic Commission for Africa; African Development Bank. New evidence on Africa’s urban economy. In Africa’s Urbanisation Dynamics 2022: The Economic Power of Africa’s Cities; OECD Publishing: Paris, France, 2022. [Google Scholar] [CrossRef]
  15. Lall, S.V.; Henderson, J.V.; Venables, A.J. Africa’s Cities: Opening Doors to the World; World Bank Publications: Washington, DC, USA, 2017. [Google Scholar]
  16. Ryan, C. African Metropolis: Six Stories from African Cities. 2013. 92 minutes. In Arabic, English, French, Kiswahili, Nouchi, Pidgin English, and Yoruba, with English subtitles. Goethe Institute South Africa. $42.50. Afr. Stud. Rev. 2016, 59, 322–324. [Google Scholar] [CrossRef]
  17. While, A.; Whitehead, M. Cities, Urbanisation and Climate Change. Urban Stud. 2013, 50, 1325–1331. [Google Scholar] [CrossRef]
  18. Castells, M. Globalisation, Networking, Urbanisation: Reflections on the Spatial Dynamics of the Information Age. Urban Stud. 2010, 47, 2737–2745. [Google Scholar] [CrossRef]
  19. Kundu, A. Urbanisation and Industrialisation in Africa and Asia in the Context of SDG Linked Issues of Sustainability, Inclusivity and Partnership. In Asia-Africa Growth Corridor: Development and Cooperation in Indo-Pacific; Chaturvedi, S., Prakash, A., Dash, P., Eds.; Springer Singapore: Singapore, 2020; pp. 53–67. [Google Scholar] [CrossRef]
  20. Bazrkar, M.; Zamani, N.; Eslamian, S.; Eslamian, A.; Dehghan, Z. Urbanization and climate change. In Handbook of Climate Change Adaptation; Springer: Berlin/Heidelberg, Germany, 2015; pp. 619–655. [Google Scholar]
  21. Adams, S.; Klobodu, E.K.M. Capital flows and the distribution of income in sub-Saharan Africa. Econ. Anal. Policy 2017, 55, 169–178. [Google Scholar] [CrossRef]
  22. Lwasa, S.; Buyana, K.; Kasaija, P.; Mutyaba, J. Scenarios for adaptation and mitigation in urban Africa under 1.5 °C global warming. Curr. Opin. Environ. Sustain. 2018, 30, 52–58. [Google Scholar] [CrossRef]
  23. Thorn, J.P.R.; Hejnowicz, A.P.; Marchant, R.; Ajala, O.A.; Delgado, G.; Shackleton, S.; Kavonic, J.; Cinderby, S. Dryland Nature Based Solutions for Informal Settlement Upgrading Schemes in Africa; ICLEI Africa: Cape Town, South Africa, 2021. [Google Scholar]
  24. Lemoine-Rodríguez, R.; Inostroza, L.; Zepp, H. The global homogenization of urban form. An assessment of 194 cities across time. Landsc. Urban Plan. 2020, 204, 103949. [Google Scholar] [CrossRef]
  25. Tsai, Y.H.; Stow, D.; Chen, H.L.; Lewison, R.; An, L.; Shi, L. Mapping Vegetation and Land Use Types in Fanjingshan National Nature Reserve Using Google Earth Engine. Remote Sens. 2018, 10, 927. [Google Scholar] [CrossRef]
  26. Anderson, P.M.L.; Okereke, C.; Rudd, A.; Parnell, S. Regional Assessment of Africa. In Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities: A Global Assessment; Elmqvist, T., Fragkias, M., Goodness, J., Güneralp, B., Marcotullio, P.J., McDonald, R.I., Parnell, S., Schewenius, M., Sendstad, M., Seto, K.C., et al., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2013; pp. 453–459. [Google Scholar] [CrossRef][Green Version]
  27. ECHO. The Urban Amplifier: Adapting to Urban Specificities; European Commission: Brussels, Belgium, 2018. [Google Scholar]
  28. UN-Habitat. Slum Almanac 2015–2016; UN-Habitat: Nairobi, Kenya, 2016. [Google Scholar]
  29. IPCC. Climate Change 2022: Impacts, Adaptation and Vulnerability; IPCC: Geneva, Switzerland, 2022. [Google Scholar]
  30. Seneviratne, S.I.; Nicholls, N.; Easterling, D.; Goodess, C.M.; Kanae, S.; Kossin, J.; Luo, Y.; Marengo, J.; Mc Innes, K.; Rahimi, M. Changes in climate extremes and their impacts on the natural physical environment. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2012; pp. 109–230. [Google Scholar]
  31. Conway, D.; Schipper, E.L.F. Adaptation to climate change in Africa: Challenges and opportunities identified from Ethiopia. Glob. Environ. Change 2011, 21, 227–237. [Google Scholar] [CrossRef]
  32. Henderson, J.V.; Storeygard, A.; Deichmann, U. Has climate change driven urbanization in Africa? J. Dev. Econ. 2017, 124, 60–82. [Google Scholar] [CrossRef][Green Version]
  33. Henderson, J.V.; Storeygard, A.; Deichmann, U. Is Climate Change Driving Urbanization in Africa? World Bank Policy Research Working Paper; World Bank: Washington, DC, USA, 2014. [Google Scholar]
  34. Almazroui, M.; Saeed, F.; Saeed, S.; Nazrul Islam, M.; Ismail, M.; Klutse, N.A.B.; Siddiqui, M.H. Projected Change in Temperature and Precipitation Over Africa from CMIP6. Earth Syst. Environ. 2020, 4, 455–475. [Google Scholar] [CrossRef]
  35. Arneth, A.; Barbosa, H.; Benton, T.; Calvin, K.; Calvo, E.; Connors, S.; Cowie, A.; Davin, E.; Denton, F.; van Diemen, R. IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Summary for Policy Makers; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
  36. De Haan, C.; Dubern, E.; Garancher, B.; Quintero, C. Pastoralism Development in the Sahel: A Road to Stability? World Bank: Washington, DC, USA, 2016. [Google Scholar]
  37. Band, W. Where Climate Change Is Reality: Supporting Africa’s Sahel Pastoralists to Secure a Resilient Future. Available online: https://www.worldbank.org/en/news/immersive-story/2020/09/21/where-climate-change-is-reality-supporting-africas-sahel-pastoralists-secure-a-resilient-future (accessed on 22 June 2022).
  38. Mukasa, A.N.; Woldemichael, A.D.; Salami, A.O.; Simpasa, A.M. Africa’s agricultural transformation: Identifying priority areas and overcoming challenges. Afr. Econ. Brief 2017, 8, 1–16. [Google Scholar]
  39. Salih, A.A.M.; Baraibar, M.; Mwangi, K.K.; Artan, G. Climate change and locust outbreak in East Africa. Nat. Clim. Chang. 2020, 10, 584–585. [Google Scholar] [CrossRef]
  40. FAO. Desert Locust. Available online: https://www.fao.org/locusts/en/ (accessed on 24 May 2022).
  41. Jones, B. West Africa Coastal Vulnerability Mapping: Population Projections, 2030 and 2050; NASA Socioeconomic Data and Applications Center (SEDAC): Palisades, NY, USA, 2018. [Google Scholar]
  42. Croitoru, L.M.; Juan, J.; Sarraf, M. The Cost of Coastal Zone Degradation in West Africa; World Bank: Washington, DC, USA, 2019. [Google Scholar]
  43. Badou, F.; Hounkpè, J.; Yira, Y.; Ibrahim, M.; Bossa, A. Increasing Devastating Flood Events in West Africa: Who Is to Blame? Regional Climate Change Series; WASCAL Publishing: Ouagadougou, Burkina Faso, 2019; pp. 84–90. [Google Scholar]
  44. Gebrechorkos, S.H.; Hülsmann, S.; Bernhofer, C. Regional climate projections for impact assessment studies in East Africa. Environ. Res. Lett. 2019, 14, 044031. [Google Scholar] [CrossRef]
  45. Haile, G.G.; Tang, Q.; Hosseini-Moghari, S.-M.; Liu, X.; Gebremicael, T.G.; Leng, G.; Kebede, A.; Xu, X.; Yun, X. Projected Impacts of Climate Change on Drought Patterns Over East Africa. Earth’s Future 2020, 8, e2020EF001502. [Google Scholar] [CrossRef]
  46. Oke, T.R. City size and the urban heat island. Atmos. Environ. 1973, 7, 769–779. [Google Scholar] [CrossRef]
  47. OECD. Social Protection in East Africa; OECD: Paris, France, 2017. [Google Scholar] [CrossRef]
  48. Li, Y.; Schubert, S.; Kropp, J.P.; Rybski, D. On the influence of density and morphology on the Urban Heat Island intensity. Nat. Commun. 2020, 11, 2647. [Google Scholar] [CrossRef]
  49. Wemegah, C.S.; Yamba, E.I.; Aryee, J.N.A.; Sam, F.; Amekudzi, L.K. Assessment of urban heat island warming in the greater accra region. Sci. Afr. 2020, 8, e00426. [Google Scholar] [CrossRef]
  50. Parkes, B.; Cronin, J.; Dessens, O.; Sultan, B. Climate change in Africa: Costs of mitigating heat stress. Clim. Change 2019, 154, 461–476. [Google Scholar] [CrossRef][Green Version]
  51. Sachindra, D.A.; Ng, A.W.M.; Muthukumaran, S.; Perera, B.J.C. Impact of climate change on urban heat island effect and extreme temperatures: A case-study. Q. J. R. Meteorol. Soc. 2016, 142, 172–186. [Google Scholar] [CrossRef]
  52. Ramamurthy, P.; Bou-Zeid, E. Contribution of impervious surfaces to urban evaporation. Water Resour. Res. 2014, 50, 2889–2902. [Google Scholar] [CrossRef]
  53. Yu, Z.; Guo, X.; Jørgensen, G.; Vejre, H. How can urban green spaces be planned for climate adaptation in subtropical cities? Ecol. Indic. 2017, 82, 152–162. [Google Scholar] [CrossRef]
  54. Ige, S.O.; Ajayi, V.O.; Adeyeri, O.E.; Oyekan, K.S.A. Assessing remotely sensed temperature humidity index as human comfort indicator relative to landuse landcover change in Abuja, Nigeria. Spat. Inf. Res. 2017, 25, 523–533. [Google Scholar] [CrossRef]
  55. Wang, Y.; Bakker, F.; de Groot, R.; Wörtche, H. Effect of ecosystem services provided by urban green infrastructure on indoor environment: A literature review. Build. Environ. 2014, 77, 88–100. [Google Scholar] [CrossRef]
  56. El Kenawy, A.M.; Hereher, M.; Robaa, S.M.; McCabe, M.E.; Lopez-Moreno, J.I.; Dominguez-Castro, F.; Gaber, I.M.; Al-Awadhi, T.; Al-Buloshi, A.; Al Nasiri, N.; et al. Nocturnal Surface Urban Heat Island over Greater Cairo: Spatial Morphology, Temporal Trends and Links to Land-Atmosphere Influences. Remote Sens. 2020, 12, 3889. [Google Scholar] [CrossRef]
  57. He, B.-J. Potentials of meteorological characteristics and synoptic conditions to mitigate urban heat island effects. Urban Clim. 2018, 24, 26–33. [Google Scholar] [CrossRef]
  58. Offerle, B.; Jonsson, P.; Eliasson, I.; Grimmond, C.S.B. Urban modification of the surface energy balance in the West African Sahel: Ouagadougou, Burkina Faso. J. Clim. 2005, 18, 3983–3995. [Google Scholar] [CrossRef]
  59. Grimmond, S. Urbanization and Global Environmental Change: Local Effects of Urban Warming. Geogr. J. 2007, 173, 83–88. [Google Scholar] [CrossRef]
  60. Peng, J.; Xie, P.; Liu, Y.; Ma, J. Urban thermal environment dynamics and associated landscape pattern factors: A case study in the Beijing metropolitan region. Remote Sens. Environ. 2016, 173, 145–155. [Google Scholar] [CrossRef]
  61. Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
  62. Chapman, S.; Watson, J.E.M.; Salazar, A.; Thatcher, M.; McAlpine, C.A. The impact of urbanization and climate change on urban temperatures: A systematic review. Landsc. Ecol. 2017, 32, 1921–1935. [Google Scholar] [CrossRef]
  63. Marcotullio, P.J.; Keßler, C.; Fekete, B.M. The future urban heat-wave challenge in Africa: Exploratory analysis. Glob. Environ. Change 2021, 66, 102190. [Google Scholar] [CrossRef]
  64. WHO. Heat and Health. Available online: https://www.who.int/news-room/fact-sheets/detail/climate-change-heat-and-health (accessed on 20 May 2022).
  65. Sylla, M.B.; Faye, A.; Giorgi, F.; Diedhiou, A.; Kunstmann, H. Projected Heat Stress Under 1.5 °C and 2 °C Global Warming Scenarios Creates Unprecedented Discomfort for Humans in West Africa. Earth’s Future 2018, 6, 1029–1044. [Google Scholar] [CrossRef][Green Version]
  66. Zhong, C.; Chen, C.; Liu, Y.; Gao, P.; Li, H. A Specific Study on the Impacts of PM2.5 on Urban Heat Islands with Detailed in Situ Data and Satellite Images. Sustainability 2019, 11, 7075. [Google Scholar] [CrossRef][Green Version]
  67. D’Amato, G. Effects of climatic changes and urban air pollution on the rising trends of respiratory allergy and asthma. Multidiscip. Respir. Med. 2011, 6, 28. [Google Scholar] [CrossRef] [PubMed][Green Version]
  68. Burke, M.; Hsiang, S.M.; Miguel, E. Global non-linear effect of temperature on economic production. Nature 2015, 527, 235–239. [Google Scholar] [CrossRef] [PubMed]
  69. Brousse, O.; Simpson, C.; Walker, N.; Fenner, D.; Meier, F.; Taylor, J.; Heaviside, C. Evidence of horizontal urban heat advection in London using six years of data from a citizen weather station network. Environ. Res. Lett. 2022, 17, 044041. [Google Scholar] [CrossRef]
  70. World Bank. Analysis of Heat Waves and Urban Heat Island Effects in Central European Cities and Implications for Urban Planning; World Bank: Washington, DC, USA, 2020. [Google Scholar]
  71. Stewart, I.D. Why should urban heat island researchers study history? Urban Clim. 2019, 30, 100484. [Google Scholar] [CrossRef]
  72. Van de Walle, J.; Brousse, O.; Arnalsteen, L.; Byarugaba, D.; Ddumba, D.S.; Demuzere, M.; Lwasa, S.; Nsangi, G.; Sseviiri, H.; Thiery, W.; et al. Can local fieldwork help to represent intra-urban variability of canopy parameters relevant for tropical African climate studies? Theor. Appl. Climatol. 2021, 146, 457–474. [Google Scholar] [CrossRef]
  73. Stewart, I.D. A systematic review and scientific critique of methodology in modern urban heat island literature. Int. J. Climatol. 2011, 31, 200–217. [Google Scholar] [CrossRef]
  74. Middel, A.; Nazarian, N.; Demuzere, M.; Bechtel, B. Urban Climate Informatics: An Emerging Research Field. Front. Environ. Sci. 2022, 10, 867434. [Google Scholar] [CrossRef]
  75. Almeida, C.R.d.; Teodoro, A.C.; Gonçalves, A. Study of the Urban Heat Island (UHI) Using Remote Sensing Data/Techniques: A Systematic Review. Environments 2021, 8, 105. [Google Scholar] [CrossRef]
  76. Tomlinson, C.J.; Chapman, L.; Thornes, J.E.; Baker, C. Remote sensing land surface temperature for meteorology and climatology: A review. Meteorol. Appl. 2011, 18, 296–306. [Google Scholar] [CrossRef][Green Version]
  77. Ferreira, L.S.; Duarte, D.H.S. Exploring the relationship between urban form, land surface temperature and vegetation indices in a subtropical megacity. Urban Clim. 2019, 27, 105–123. [Google Scholar] [CrossRef]
  78. Sun, Q.; Wang, Z.; Li, Z.; Erb, A.; Schaaf, C.B. Evaluation of the global MODIS 30 arc-second spatially and temporally complete snow-free land surface albedo and reflectance anisotropy dataset. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 36–49. [Google Scholar] [CrossRef]
  79. Fallmann, J.; Emeis, S. How to bring urban and global climate studies together with urban planning and architecture? Dev. Built Environ. 2020, 4, 100023. [Google Scholar] [CrossRef]
  80. He, B.-J.; Zhu, J.; Zhao, D.-X.; Gou, Z.-H.; Qi, J.-D.; Wang, J. Co-benefits approach: Opportunities for implementing sponge city and urban heat island mitigation. Land Use Policy 2019, 86, 147–157. [Google Scholar] [CrossRef]
  81. Flato, G.; Marotzke, J.; Abiodun, B.; Braconnot, P.; Chou, S.C.; Collins, W.; Cox, P.; Driouech, F.; Emori, S.; Eyring, V. Evaluation of Climate Models; Cambridge University Press: Cambridge, UK, 2014; pp. 741–866. [Google Scholar]
  82. Hewitt, C.D.; Guglielmo, F.; Joussaume, S.; Bessembinder, J.; Christel, I.; Doblas-Reyes, F.J.; Djurdjevic, V.; Garrett, N.; Kjellström, E.; Krzic, A.; et al. Recommendations for Future Research Priorities for Climate Modeling and Climate Services. Bull. Am. Meteorol. Soc. 2021, 102, E578–E588. [Google Scholar] [CrossRef]
  83. Früh, B.; Becker, P.; Deutschländer, T.; Hessel, J.-D.; Kossmann, M.; Mieskes, I.; Namyslo, J.; Roos, M.; Sievers, U.; Steigerwald, T.; et al. Estimation of Climate-Change Impacts on the Urban Heat Load Using an Urban Climate Model and Regional Climate Projections. J. Appl. Meteorol. Climatol. 2011, 50, 167–184. [Google Scholar] [CrossRef]
  84. Masson, V.; Heldens, W.; Bocher, E.; Bonhomme, M.; Bucher, B.; Burmeister, C.; de Munck, C.; Esch, T.; Hidalgo, J.; Kanani-Sühring, F.; et al. City-descriptive input data for urban climate models: Model requirements, data sources and challenges. Urban Clim. 2020, 31, 100536. [Google Scholar] [CrossRef]
  85. Ng, E.; Yuan, C.; Chen, L.; Ren, C.; Fung, J.C.H. Improving the wind environment in high-density cities by understanding urban morphology and surface roughness: A study in Hong Kong. Landsc. Urban Plan. 2011, 101, 59–74. [Google Scholar] [CrossRef] [PubMed]
  86. Dai, X.; Wang, L.; Tao, M.; Huang, C.; Sun, J.; Wang, S. Assessing the ecological balance between supply and demand of blue-green infrastructure. J. Environ. Manag. 2021, 288, 112454. [Google Scholar] [CrossRef] [PubMed]
  87. Li, H.; Meier, F.; Lee, X.; Chakraborty, T.; Liu, J.; Schaap, M.; Sodoudi, S. Interaction between urban heat island and urban pollution island during summer in Berlin. Sci. Total Environ. 2018, 636, 818–828. [Google Scholar] [CrossRef] [PubMed]
  88. Van de Walle, J.; Brousse, O.; Arnalsteen, L.; Brimicombe, C.; Byarugaba, D.; Demuzere, M.; Jjemba, E.; Lwasa, S.; Misiani, H.; Nsangi, G.; et al. Lack of vegetation exacerbates exposure to dangerous heat in dense settlements in a tropical African city. Environ. Res. Lett. 2022, 17, 024004. [Google Scholar] [CrossRef]
  89. Ching, J.; Aliaga, D.; Mills, G.; Masson, V.; See, L.; Neophytou, M.; Middel, A.; Baklanov, A.; Ren, C.; Ng, E.; et al. Pathway using WUDAPT’s Digital Synthetic City tool towards generating urban canopy parameters for multi-scale urban atmospheric modeling. Urban Clim. 2019, 28, 100459. [Google Scholar] [CrossRef]
  90. Asif, M.S.; Lau, H.; Nakandala, D.; Fan, Y.; Hurriyet, H. Adoption of green supply chain management practices through collaboration approach in developing countries–From literature review to conceptual framework. J. Clean. Prod. 2020, 276, 124191. [Google Scholar] [CrossRef]
  91. Livoreil, B.; Glanville, J.; Haddaway, N.R.; Bayliss, H.; Bethel, A.; de Lachapelle, F.F.; Robalino, S.; Savilaakso, S.; Zhou, W.; Petrokofsky, G.; et al. Systematic searching for environmental evidence using multiple tools and sources. Environ. Evid. 2017, 6, 23. [Google Scholar] [CrossRef]
  92. Bernes, C.; Macura, B.; Jonsson, B.G.; Junninen, K.; Müller, J.; Sandström, J.; Lõhmus, A.; Macdonald, E. Manipulating ungulate herbivory in temperate and boreal forests: Effects on vegetation and invertebrates. A systematic review. Environ. Evid. 2018, 7, 13. [Google Scholar] [CrossRef][Green Version]
  93. Pullin, S.A.; Frampton, G.K.; Livoreil, B.; Petrokofsky, G. Guidelines and Standards for Evidence Synthesis in Environmental Management. Available online: https://environmentalevidence.org/information-for-authors/ (accessed on 21 January 2022).
  94. SDGF. From MDGs to SDGs. Available online: https://www.sdgfund.org/mdgs-sdgs (accessed on 21 January 2022).
  95. Rohat, G.; Flacke, J.; Dosio, A.; Dao, H.; van Maarseveen, M. Projections of Human Exposure to Dangerous Heat in African Cities Under Multiple Socioeconomic and Climate Scenarios. Earths Future 2019, 7, 528–546. [Google Scholar] [CrossRef][Green Version]
  96. Smit, W.; Parnell, S. Urban sustainability and human health: An African perspective. Curr. Opin. Environ. Sustain. 2012, 4, 443–450. [Google Scholar] [CrossRef]
  97. Arsiso, B.K.; Tsidu, G.M.; Stoffberg, G.H.; Tadesse, T. Influence of urbanization-driven land use/cover change on climate: The case of Addis Ababa, Ethiopia. Phys. Chem. Earth 2018, 105, 212–223. [Google Scholar] [CrossRef]
  98. Li, X.Q.; Stringer, L.C.; Dallimer, M. The Spatial and Temporal Characteristics of Urban Heat Island Intensity: Implications for East Africa’s Urban Development. Climate 2021, 9. [Google Scholar] [CrossRef]
  99. Popoola, O.; Durojaye, P.; Bayode, T.; Popoola, A.; Olanibi, J.; Aladetuyi, O. Spatio-temporal variance and urban heat island in Akure, Nigeria: A time-spaced analysis Using GIS Technique. S. Afr. J. Geomat. 2020, 9, 365–378. [Google Scholar] [CrossRef]
  100. Li, X.Q.; Stringer, L.C.; Chapman, S.; Dallimer, M. How urbanisation alters the intensity of the urban heat island in a tropical African city. Plos One 2021, 16. [Google Scholar] [CrossRef] [PubMed]
  101. Odindi, J.O.; Nongebeza, S.; Siro, N. The influence of seasonal land-use-land-cover transformation on thermal characteristics within the city of Pietermaritzburg. S. Afr. J. Geomat. 2020, 9, 348–364. [Google Scholar] [CrossRef]
  102. Mohammed, M.U.; Hassan, N.I.; Badamasi, M.M. In search of missing links: Urbanisation and climate change in Kano Metropolis, Nigeria. Int. J. Urban Sustain. Dev. 2019, 11, 309–318. [Google Scholar] [CrossRef]
  103. Feyisa, G.L.; Meilby, H.; Jenerette, G.D.; Pauliet, S. Locally optimized separability enhancement indices for urban land cover mapping: Exploring thermal environmental consequences of rapid urbanization in Addis Ababa, Ethiopia. Remote Sens. Environ. 2016, 175, 14–31. [Google Scholar] [CrossRef]
  104. Dissanayake, D.; Morimoto, T.; Murayama, Y.; Ranagalage, M. Impact of Landscape Structure on the Variation of Land Surface Temperature in Sub-Saharan Region: A Case Study of Addis Ababa using Landsat Data (1986–2016). Sustainability 2019, 11, 2257. [Google Scholar] [CrossRef][Green Version]
  105. Di Leo, N.; Escobedo, F.J.; Dubbeling, M. The role of urban green infrastructure in mitigating land surface temperature in Bobo-Dioulasso, Burkina Faso. Environ. Dev. Sustain. 2016, 18, 373–392. [Google Scholar] [CrossRef][Green Version]
  106. Odindi, J.; Mutanga, O.; Abdel-Rahman, E.M.; Adam, E.; Bangamwabo, V. Determination of urban land-cover types and their implication on thermal characteristics in three South African coastal metropolitans using remotely sensed data. S. Afr. Geogr. J. 2017, 99, 52–67. [Google Scholar] [CrossRef]
  107. Orimoloye, I.R.; Mazinyo, S.P.; Nel, W.; Kalumba, A.M. Spatiotemporal monitoring of land surface temperature and estimated radiation using remote sensing: Human health implications for East London, South Africa. Environ. Earth Sci. 2018, 77, 77. [Google Scholar] [CrossRef]
  108. Tarawally, M.; Xu, W.B.; Hou, W.M.; Mushore, T.D. Comparative Analysis of Responses of Land Surface Temperature to Long-Term Land Use/Cover Changes between a Coastal and Inland City: A Case of Freetown and Bo Town in Sierra Leone. Remote Sensing 2018, 10, 112. [Google Scholar] [CrossRef][Green Version]
  109. Mustafa, E.K.; Abd El-Hamid, H.T.; Tarawally, M. Spatial and temporal monitoring of drought based on land surface temperature, Freetown City, Sierra Leone, West Africa. Arab. J. Geosci. 2021, 14, 1013. [Google Scholar] [CrossRef]
  110. Mushore, T.D.; Mutanga, O.; Odindi, J.; Dube, T. Linking major shifts in land surface temperatures to long term land use and land cover changes: A case of Harare, Zimbabwe. Urban Clim. 2017, 20, 120–134. [Google Scholar] [CrossRef]
  111. Adeyemi, A.; Botai, J.; Ramoelo, A.; van der Merwe, F.; Tsela, P. Effect of impervious surface area and vegetation changes on mean surface temperature over Tshwane metropolis, Gauteng Province, South Africa. S. Afr. J. Geomat. 2015, 4, 351–368. [Google Scholar] [CrossRef][Green Version]
  112. Akinyemi, F.O.; Ikanyeng, M.; Muro, J. Land cover change effects on land surface temperature trends in an African urbanizing dryland region. City Environ. Interact. 2019, 4, 100029. [Google Scholar] [CrossRef]
  113. Gintamo, T.T.; Mengistu, H.; Kanyerere, T. GIS-based modelling of climate variability impacts on groundwater quality: Cape Flats aquifer, Cape Town, South Africa. Groundw. Sustain. Dev. 2021, 15, 100663. [Google Scholar] [CrossRef]
  114. Venter, Z.S.; Brousse, O.; Esau, I.; Meier, F. Hyperlocal mapping of urban air temperature using remote sensing and crowdsourced weather data. Remote Sens. Environ. 2020, 242, 111791. [Google Scholar] [CrossRef]
  115. Elbardisy, W.M.; Salheen, M.A.; Fahmy, M. Solar Irradiance Reduction Using Optimized Green Infrastructure in Arid Hot Regions: A Case Study in El-Nozha District, Cairo, Egypt. Sustainability 2021, 13, 9617. [Google Scholar] [CrossRef]
  116. Cavan, G.; Lindley, S.; Jalayer, F.; Yeshitela, K.; Pauleit, S.; Renner, F.; Gill, S.; Capuano, P.; Nebebe, A.; Woldegerima, T.; et al. Urban morphological determinants of temperature regulating ecosystem services in two African cities. Ecol. Indic. 2014, 42, 43–57. [Google Scholar] [CrossRef][Green Version]
  117. Okorie, F.C.; Ezedike, C. Influence of climate variability on mosquitoes bite in Orlu area of Imo state Nigeria. Soc. Sci. 2014, 3, 183–188. [Google Scholar] [CrossRef][Green Version]
  118. Moda, H.M.; Leal, W.; Minhas, A. Impacts of Climate Change on Outdoor Workers and Their Safety: Some Research Priorities. Int. J. Environ. Res. Public Health 2019, 16, 3458. [Google Scholar] [CrossRef] [PubMed][Green Version]
  119. Jagarnath, M.; Thambiran, T.; Gebreslasie, M. Heat stress risk and vulnerability under climate change in Durban metropolitan, South Africa-identifying urban planning priorities for adaptation. Clim. Chang. 2020, 163, 807–829. [Google Scholar] [CrossRef]
  120. Adegebo, B.O. Urban thermal perception and self-reported health effects in Ibadan, south west Nigeria. Int. J. Biometeorol. 2022, 66, 331–343. [Google Scholar] [CrossRef] [PubMed]
  121. Pasquini, L.; van Aardenne, L.; Godsmark, C.N.; Lee, J.; Jack, C. Emerging climate change-related public health challenges in Africa: A case study of the heat-health vulnerability of informal settlement residents in Dar es Salaam, Tanzania. Sci. Total Environ. 2020, 747, 141355. [Google Scholar] [CrossRef] [PubMed]
  122. Kayaga, S.M.; Amankwaa, E.F.; Gough, K.V.; Wilby, R.L.; Abarike, M.A.; Codjoe, S.N.A.; Kasei, R.; Nabilse, C.K.; Yankson, P.W.K.; Mensah, P.; et al. Cities and extreme weather events: Impacts of flooding and extreme heat on water and electricity services in Ghana. Environ. Urban. 2021, 33, 131–150. [Google Scholar] [CrossRef]
  123. Stringer, L.C.; Quinn, C.H.; Le, H.T.V.; Msuya, F.; Pezzuti, J.; Dallimer, M.; Afionis, S.; Berman, R.; Orchard, S.E.; Rijal, M.L. A New Framework to Enable Equitable Outcomes: Resilience and Nexus Approaches Combined. Earth’s Future 2018, 6, 902–918. [Google Scholar] [CrossRef]
  124. Bornemann, F.J.; Rowell, D.P.; Evans, B.; Lapworth, D.J.; Lwiza, K.; Macdonald, D.M.J.; Marsham, J.H.; Tesfaye, K.; Ascott, M.J.; Way, C. Future changes and uncertainty in decision-relevant measures of East African climate. Climatic Chang. 2019, 156, 365–384. [Google Scholar] [CrossRef][Green Version]
  125. Naicker, N.; Teare, J.; Balakrishna, Y.; Wright, C.Y.; Mathee, A. Indoor Temperatures in Low Cost Housing in Johannesburg, South Africa. Int. J. Environ. Res. Public Health 2017, 14, 1410. [Google Scholar] [CrossRef][Green Version]
  126. Hugo, J.; du Plessis, C. A quantitative analysis of interstitial spaces to improve climate change resilience in Southern African cities. Clim. Dev. 2020, 12, 591–599. [Google Scholar] [CrossRef]
  127. Titz, A.; Chiotha, S.S. Pathways for Sustainable and Inclusive Cities in Southern and Eastern Africa through Urban Green Infrastructure? Sustainability 2019, 11, 2729. [Google Scholar] [CrossRef][Green Version]
  128. Mensah, C.A. Urban green spaces in Africa: Nature and challenges. Int. J. Ecosyst. 2014, 4, 1–11. [Google Scholar]
  129. Mitchell, D.; James, R.; Forster, P.M.; Betts, R.A.; Shiogama, H.; Allen, M. Realizing the impacts of a 1.5 °C warmer world. Nat. Clim. Chang. 2016, 6, 735–737. [Google Scholar] [CrossRef][Green Version]
  130. Serdeczny, O.; Adams, S.; Baarsch, F.; Coumou, D.; Robinson, A.; Hare, W.; Schaeffer, M.; Perrette, M.; Reinhardt, J. Climate change impacts in Sub-Saharan Africa: From physical changes to their social repercussions. Reg. Environ. Chang. 2017, 17, 1585–1600. [Google Scholar] [CrossRef]
  131. Schleussner, C.-F.; Lissner, T.K.; Fischer, E.M.; Wohland, J.; Perrette, M.; Golly, A.; Rogelj, J.; Childers, K.; Schewe, J.; Frieler, K. Differential climate impacts for policy-relevant limits to global warming: The case of 1.5 °C and 2 °C. Earth Syst. Dyn. 2016, 7, 327–351. [Google Scholar] [CrossRef][Green Version]
  132. Mitchell, D. Interactive comment on “Half a degree Additional warming, Projections, Prognosis and Impacts (HAPPI): Background and Experimental Design” by Daniel Mitchell et al. Geosci. Model Dev. Discuss. 2017, 10, 571–583. [Google Scholar] [CrossRef][Green Version]
  133. Baudoin, M.-A.; Vogel, C.; Nortje, K.; Naik, M. Living with drought in South Africa: Lessons learnt from the recent El Niño drought period. Int. J. Disaster Risk Reduct. 2017, 23, 128–137. [Google Scholar] [CrossRef]
  134. Gizaw, M.S.; Gan, T.Y. Impact of climate change and El Niño episodes on droughts in sub-Saharan Africa. Clim. Dyn. 2017, 49, 665–682. [Google Scholar] [CrossRef]
Satellite

Platform

Sensor Dataset Availability Spatial

Resolution

Orbital

Frequency

Aqua MODIS 2002 1000 m Twice daily
CBERS 1 IRMSS 1999–2003 160 m 26 days
CBERS 2 IRMSS 2003–2009 160 m 26 days
CBERS 2B IRMSS 2007–2010 160 m 26 days
CBERS 4 IRS 2014–present 80 m 26 days
CBERS 4A IRS 2019–present 80 m 31 days
Envisat AATSR 2002–2012 1000 m 35 days
HJ-1B IRMSS 2008–2018 300 m 31 days
HJ-2A and HJ-2B IRMSS-2 (HJ) 2020–present 300 m 4 days
Landsat 4 TM 1982–1993 Collected at 100 m and resampled to 30 m 16 days
Landsat 5 TM 1984–2011 Collected at 100 m and resampled to 30 m 16 days
Landsat 7 ETM+ 1999–present Collected at 60 m and resampled to 30 m 16 days
Landsat 8 TIRS 2013–present Collected at 100 m and resampled to 30 m 16 days
Landsat 9 TIRS 2021–present Collected at 100 m and resampled to 30 m 16 days
METOP-A, B, C AVHRR 2 2006–present 1100 m 29 days
NOAA 6, 8 10, TIROS-N AVHRR 1978–2001 1100 m Twice daily
NOAA 15, 16, 17, 18, 19 AVHRR 2 1981–2007 1100 m Twice daily
NOAA 7, 9, 11, 12, 13, 14 AVHRR 3 1998–present 1100 m Twice daily
Sentinel3 SLSTR 2016–present 1000 m 2016-present
Terra MODIS 1999–present 1000 m Twice daily
City Name Country Study Period Major Data Data Processing Tools Study Result Author
Accra Ghana 1991, 2002,2017(Landsat)

1980–2017(in-situ)

Landsat, In-situ QGIS SUHI increasing [49]
Addis Ababa Ethiopia 1960–2080 Google Earth, Landsat, HadCM3 ArcMap10.2, ENVI 4.2 SUHI increasing [97]
Addis Ababa Ethiopia 1985–2010 Aerial photos, Google Earth, Landsat, Ground survey data Envi 4.8, LST increasing [103]
Addis Ababa Ethiopia 1986–2016 Google Earth, Landsat, spatial population data GIS (No specified) LST increasing [104]
Addis Ababa Ethiopia 2003–2017 MODIS Global Surface UHI Explorer, GIS 10.3 SUHI increasing [98]
Akure Nigeria 2000–2018 Google Earth, Landsat ArcGIS 10.5 SUHI increasing [99]
Bobo-Dioulasso Burkina Faso 1991–2013 Google Earth, Landsat Ilwis 3.8 LST increasing [105]
Bo Town Sierra Leone 1998–2015 Google Earth, Landsat, Meteorological data GIS (No specified) Surface temperature increasing [108]
Cairo Egypt 2003–2019 Google Earth, MODIS, Municipal digital map GIS (No specified) SUHI decreasing [56]
Cape Town South Africa 2041–2060 WorldClim, GCM, Meteorological data ArcGIS 10.3 Surface temperature increasing [113]
Dar es Salaam Tanzania 2003–2017 MODIS Global Surface UHI Explorer, GIS 10.3 SUHI increasing [98]
East London South Africa 1986–2016 Landsat ArcGIS 10.2 LST increasing [107]
Freetown Sierra Leone 1998–2015 Google Earth, Landsat, Meteorological data Ilwis 3.8 LST increasing [108]
Freetown Sierra Leone 2000–2030 Landsat, Polynomial model Envi5.3, GIS (No specified) LST increasing [109]
Gaborone Botswana 2000–2018 Google Earth, Landsat, MODIS, Temperature data GIS (No specified) LST increasing [112]
Harare Zimbabwe 1984–2016 Landsat ENVI LST increasing [110]
Kampala Uganda 2003–2017 MODIS, Landsat Global Surface UHI Explorer, GIS 10.3 SUHI increasing [100]
Kampala Uganda 2003–2017 MODIS Global Surface UHI Explorer, GIS 10.3 SUHI increasing [98]
Kano Nigeria 1980–2018 Landsat, Meteorological data ArcGIS 10.3 LST increasing [102]
Khartoum Sudan 2003–2017 MODIS Global Surface UHI Explorer, GIS 10.3 SUHI increasing [98]
Nairobi Kenya 2003–2017 MODIS Global Surface UHI Explorer, GIS 10.3 SUHI increasing [98]
Tshwane South Africa 2013–2014 Landsat ENVI, ArcGIS 10.1 LST increasing [111]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Share and Cite

Li, X.; Stringer, L.C.; Dallimer, M. The Impacts of Urbanisation and Climate Change on the Urban Thermal Environment in Africa. Climate 2022, 10, 164. https://doi.org/10.3390/cli10110164

Li X, Stringer LC, Dallimer M. The Impacts of Urbanisation and Climate Change on the Urban Thermal Environment in Africa. Climate. 2022; 10(11):164. https://doi.org/10.3390/cli10110164

Chicago/Turabian Style

Li, Xueqin, Lindsay C. Stringer, and Martin Dallimer. 2022. “The Impacts of Urbanisation and Climate Change on the Urban Thermal Environment in Africa” Climate 10, no. 11: 164. https://doi.org/10.3390/cli10110164

You are watching: The Impacts of Urbanisation and Climate Change on the Urban Thermal Environment in Africa. Info created by GBee English Center selection and synthesis along with other related topics.