Peri-Urbanization and Rurbanization in Leiria City: the Importance of a Planning Framework

Abstract

:

1. Introduction

2. Materials and Methods

2.1. Study Area

2.2. Methodology

3. Results

3.1. Analysis of the Disaggregated Land-Use Classes

3.2. Analysis of Aggregated Land-Use Classes

3.3. Land Use Planning Framework

4. Discussion and Conclusions

Author Contributions

Acknowledgments

Conflicts of Interest

References

  1. Rodriguez-Galiano, V.; Chica-Olmo, M. Land cover change analysis of a Mediterranean area in Spain using different sources of data: Multi-seasonal Landsat images, land surface temperature, digital terrain models and texture. Appl. Geogr. 2012, 35, 208–218. [Google Scholar] [CrossRef]
  2. Wang, J.; Zhao, Y.; Li, C.; Yu, L.; Liu, D.; Gong, P. Mapping global land cover in 2001 and 2010 with spatial-temporal consistency at 250 m resolution. ISPRS J. Photogramm. Remote Sens. 2014, 103, 38–47. [Google Scholar] [CrossRef]
  3. Direção Geral do Território. Land Use and Land Cover Evolutions in Continental Portugal. In Work to Support Reporting of Emissions and Carbon Sequestration in the Sector Use and Land Use Changes. Kyoto Protocol and United Nations Framework Convention on Climate Changes; DGT: Lisbon, Portugal, 2014. [Google Scholar]
  4. Meneses, B.M.; Reis, E.; Pereira, S.; Vale, M.J.; Reis, R. Understanding driving forces and implications associated with the land use and land cover changes in Portugal. Sustainability 2017, 9, 351. [Google Scholar] [CrossRef]
  5. Lambin, E.F.; Geist, H. Land-Use and Land-Cover Change: Local Processes and Global Impacts; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
  6. Sherestha, M.; York, A.; Boone, C.; Zhang, S. Land fragmentation due to rapid urbanization in the Phoenix metropolitan area: Analyzing the spatio-temporal patterns and drivers. Appl. Geogr. 2011, 31, 522–531. [Google Scholar] [CrossRef]
  7. Tavares, A.; Pato, R.; Magalhães, M. Spatial and temporal land use change and occupation over the last half century in a peri-urban area. Appl. Geogr. 2012, 34, 432–444. [Google Scholar] [CrossRef]
  8. Li, X.; Zhou, W.; Ouyang, Z. Forty years of urban expansion in Beijing: What is the relative importance of physical, socioeconomic, and neighborhood factors? Appl. Geogr. 2013, 38, 1–10. [Google Scholar] [CrossRef][Green Version]
  9. Turok, I.; Mykhnenko, V. The trajectories of European cities, 1960–2005. Cities 2007, 24, 165–182. [Google Scholar] [CrossRef][Green Version]
  10. Euroepan Comission. ESDP European Spatial Development Perspective. Towards Balanced and Sustainable Development of the Territory of the European Union; Euroepan Comission: Luxembourg, 1999.
  11. EU. Territorial Agenda of the European Union. In Proceedings of the Agreed on the Informal Ministerial Meeting on Urban Development and Territorial Cohesion, Leipzig, Germany, 24–25 May 2007. [Google Scholar]
  12. European Environment Agency. Urban Spraw in Europe; The Ignored Challenge (EEA Report No. 10/2006); European Environment Agency: Copenhagen, Denmark, 2006.
  13. Marques, T.S. Dinâmicas territorias e as relações urbano-rurais. Rev. Fac. Let. Geogr. 2003, 19, 507–521. [Google Scholar]
  14. Mateus, M.D.L.R. O Rural Em Mudança: Breve Nota Sobre Os Processos de Urbanização. 2011. Available online: http://hdl.handle.net/10316.2/2645 (accessed on 20 February 2018).
  15. Gaspar, J. Cidades médias e cidades intermédias. Novas funções territoriais e novas formas urbanas em Portugal. In Ciudades intermedias, urbanización y sostenibilidad; Milenio: Lleida, Spain, 2000; pp. 35–62. ISBN 978-84-89790-85-8. [Google Scholar]
  16. Monteiro, M.; Tavares, A. What is the Influence of the Planning Framework on the Land Use Change Trajectories? Photointerpretation Analysis in the 1958–2011 Period for a Medium/Small Sized City. Sustainability 2015, 7, 11727–11755. [Google Scholar] [CrossRef][Green Version]
  17. Duràn, F. Difusión Urbana y Cambio Social en los Territorios Rurales: Un estudio de casos en la provincia de Granada. Rev. Estud. Reg. 2006, 3, 179–203. [Google Scholar]
  18. Rojas, R.V. Fragmentation de la ville et noveaux modes de composition urbaine. In Collection Villes et Entreprises; L’Harmattan: Paris, France, 2002; 208p. [Google Scholar]
  19. Augé, M. Não-Lugares. Introdução a uma Antropologia da Sobremodernidade, Trad. Lucia Mucznik; Betrand Editora: Lisboa, Portugal, 1994. [Google Scholar]
  20. Braimoh, A.K. Random and systematic land-cover transitions in northern Ghana. Agric. Ecosyst. Environ. 2006, 113, 254–263. [Google Scholar] [CrossRef]
  21. Wentz, E.A.; Stefanov, W.L.; Gries, C.; Hope, D. Land use and land cover mapping from diverse data sources for an arid urban environments. Comput. Environ. Urban Syst. 2006, 30, 320–346. [Google Scholar] [CrossRef]
  22. Hara, Y.; Takeuchi, K.; Okubo, S. Urbanization linked with past agricultural land use patterns in the urban fringe of deltaic Asian mega-city: A case study in Bangkok. Landsc. Urban Plan. 2005, 73, 16–28. [Google Scholar] [CrossRef]
  23. Rozenstein, O.; Karnieli, A. Comparison of methods for land-use classification incorporating remote sensing and GIS inputs. Appl. Geogr. 2011, 31, 533–544. [Google Scholar] [CrossRef]
  24. Henríquez, C.; Azócar, G.; Romero, H. Monitoring and modeling the urban growth of two mid-sized Chilean cities. Habitat Int. 2006, 30, 945–964. [Google Scholar] [CrossRef]
  25. Catalan, B.; Sauri, D.; Serra, P. Urban sprawl in the mediterranean? Patterns of growth and change in the Barcelona Metropolitan Region 1993–2000. Landsc. Urban Plan. 2008, 85, 174–184. [Google Scholar]
  26. Verburg, P.H.; van Berkel, D.B.; van Doorn, A.M.; van Eupen, M.; van den Heiligenberg, H.A. Trajectories of land use change in Europe: A model-based exploration of rural futures. Landsc. Ecol. 2010, 25, 217–232. [Google Scholar] [CrossRef][Green Version]
  27. Kolios, S.; Stylios, C. Identification of land cover/land use changes in the greater area of the Preveza peninsula in Greece using Landsat satellite data. Appl. Geogr. 2013, 40, 150–160. [Google Scholar] [CrossRef]
  28. Liu, J.; Hull, V.; Luo, J.; Yang, W.; Liu, W.; Viña, A.; An, L. Multiple telecouplings and their complex interrelationships. Ecol. Soc. 2015, 20, 44. [Google Scholar] [CrossRef]
  29. Patacchini, E.; Zenou, Y.; Henderson, J.; Epple, D. Urban sprawl in Europe. In Brookings-Wharton Papers on Urban Affairs; Brookings Institution Press: Washington, DC, USA, 2009; pp. 125–149. [Google Scholar]
  30. Bandeira, J.M.; Coelho, M.C.; Sá, M.E.; Tavares, R.; Borrego, C. Impact of land use on urban mobility patterns, emissions and air quality in a Portuguese medium-sized city. Sci. Total Environ. 2011, 409, 1154–1163. [Google Scholar] [CrossRef] [PubMed][Green Version]
  31. Romano, B.; Zullo, F. Models of urban land use in Europe: Assessment tools and criticalities. Int. J. Agric. Environ. Inf. Syst. 2013, 4, 80–97. [Google Scholar] [CrossRef]
  32. Pinhal, A.F.P. Território da Urbanização Extensiva: Processos, Lógicas e Formas de Transformação Urbana em Leiria. Ph.D. Thesis, Porto University, Porto, Portugal, 2016. [Google Scholar]
  33. Verburg, P.; Schot, P.; Dijst, M.; Veldkamp, A. Land use change modelling: Current practice and research priorities. GeoJournal 2004, 61, 309–324. [Google Scholar] [CrossRef]
  34. European Spatial Planning Observatory Network E.S.P.O.N. ET2050-Territorial Scenarios and Visions for Europe. 2014. Available online: https://www.espon.eu/programme/projects/espon-2013/applied-research/et2050-territorial-scenarios-and-visions-europe (accessed on 1 March 2018).
  35. Oueslati, W.; Alvanides, S.; Garrod, G. Determinants of urban sprawl in European cities. Urban Stud. 2015, 52, 1594–1614. [Google Scholar] [CrossRef] [PubMed][Green Version]
  36. Teixeira, Z.; Teixeira, H.; Marques, J.C. Systematic processes of land use/land cover change to identify relevant driving forces: Implications on water quality. Sci. Total Environ. 2014, 470, 1320–1335. [Google Scholar] [CrossRef] [PubMed][Green Version]
  37. Pato, R.; Castro, P.; Tavares, A. The relevance of physical forces on land-use change and planning process. J. Environ. Plan. Manag. 2016, 59, 607–627. [Google Scholar] [CrossRef]
  38. Hara, Y.; Thaitakoo, D.; Takeuchi, K. Landform transformation on the urban fringe of Bangkok: The need to review land-use planning processes with consideration of the flow of fill materials to developing areas. Landsc. Urban Plan. 2008, 84, 74–91. [Google Scholar] [CrossRef]
  39. Su, S.; Jiang, Z.; Zhang, Q.; Zhang, Y. Transformation of agricultural landscapes under rapid urbanization: A threat to sustainability in Hang-Jia-Hu region, China. Appl. Geogr. 2011, 31, e439–e499. [Google Scholar] [CrossRef]
  40. Zhang, Y.; Hong, S.H.; Yang, J. The wildland e urban interface dynamics in the southeastern U.S. from 1990 to 2000. Landsc. Urban Plan. 2008, 85, 155–162. [Google Scholar] [CrossRef]
  41. Tagliagambe, S. Landscape as a regenerative structure of a fragmented territory. In Urban Landscape Perpsectives; Maciocco, G., Ed.; Springer: Berlin, Germany, 2008. [Google Scholar]
  42. Teixeira, C.; Zbyszewski, G.; Torre de Assunção, C.; Manuppella, G. Geological Map of Portugal at Scale 1/50,000. Explanatory Notice of 23-C Sheet (Leiria); Geological Services of Portugal: Lisbon, Portugal, 1968.
  43. Veiga, A. Geotechnical Characterization of the Terraines of Parceiros-Leiriatyphonic Valley. Ph.D. Thesis, Coimbra University, Coimbra, Portugal, 2011. [Google Scholar]
  44. INE. Censos 2011 Resultados Definitivos e Portugal; National Institute of Statistics: Lisbon, Portugal, 2012.
  45. CLC. Corine Land Cover (CLC1990) 100 m—Version 12/2000. European Environment Agency, 1990. Available online: http://www.eea.europa.eu/data-and-maps/data (accessed on 15 November 2017).
  46. Bossard, M.; Feranec, J.; Otahel, J. Corine Land Cover Technical Guide—Addendum; Technical Report No 40; EEA: Copenhagen, Denmark, 2000. [Google Scholar]
  47. Skokanová, H.; Havlíček, M.; Borovec, R.; Demek, J.; Eremiášová, R.; Chrudina, Z.; Mackovčin, P.; Rysková, R.; Slavík, P.; Stránská, T.; et al. Development of land use and main land use change processes in the period 1836–2006: Case study in the Czech Republic. J. Maps 2012, 8, 88–96. [Google Scholar]
  48. Freire, S.; Santos, T.; Tenedório, J.A. Recent urbanization and land use/land cover change in Portugal—The influence of coastline and coastal urban centers. J. Coast. Res. 2009, 56, 1499–1503. [Google Scholar]
  49. Díaz-Palacios-Sisternes, S.; Ayuga, F.; García, A. A method for detecting and describing land use transformations: An examination of Madrid’s southern urban-rural gradient between 1990 and 2006. Cities 2014, 40, 99–110. [Google Scholar] [CrossRef]
  50. Long, H.; Tang, G.; Li, X.; Heilig, G.K. Socio-economic driving forces of land-use change in Kunshan, the Yangtze River Delta economic area of China. J. Environ. Manag. 2007, 83, 351–364. [Google Scholar] [CrossRef] [PubMed]
  51. Tavares, A.; Monteiro, M.; Vargas, M.; Pato, R.; Serra, R. Land use change and forest routing in a rural context: The relevance of the community-based management and planning framework. Appl. Geogr. 2014, 52, 153–171. [Google Scholar] [CrossRef]
  52. Castanheira, J.M.; Aranha, J. Study of the change in land cover in the Alto Tâmega valley. Multi-temporal study with Landsat-5 TM e Landsat-7 ETM+ images. In Proceedings of the VIII Meeting of Geographic Information Users, Oeiras, Portugal, 2–4 June 2004. [Google Scholar]
  53. GAO. Content Analysis: A Methodology for Structuring and Analyzing Written Material; Program Evaluation and Methodology Division, United States General Accounting Office: Washington, DC, USA, 1996.
  54. Elo, S.; Kyngӓs, H. The qualitative content analysis process. J. Adv. Nurs. 2008, 62, 107–115. [Google Scholar] [CrossRef] [PubMed]
  55. Turcu, C. Re-Thinking Sustainability Indicators: Local Perspectives of Urban Sustainability. J. Environ. Plan. Manag. 2014, 56, 695–719. [Google Scholar] [CrossRef]
  56. Bodesmo, N.; Pacicco, L.; Romano, B.; Ranfa, A. The role of environmental and socio-demographic indicators in the analysis of land use changes in a protected area of the Natura 2000 Network: The case study of Lake Trasimeno, Umbria, Central Italy. Environ. Monit. Assess. 2012, 184, 831–843. [Google Scholar] [CrossRef] [PubMed]
  57. Araya, Y.; Cabral, P. Analysis and modeling of urban land cover change in Setubal and Sesimbra, Portugal. Remote Sens. 2010, 2, 1549–1563. [Google Scholar] [CrossRef]
  58. Jones, N.; de Graaff, J.; Rodrigo, I.; Duarte, F. Historical review of land use changes in Portugal (before and after EU integration in 1986) and their implications for land degradation and conservation, with a focus on Centro and Alentejo regions. Appl. Geogr. 2011, 31, 1036–1048. [Google Scholar] [CrossRef]
  59. Russo, P.; Tomaselli, G.; Pappalardo, G. Marginal periurban agricultural areas: A support method for landscape planning. Land Use Policy 2014, 41, 97–109. [Google Scholar] [CrossRef]
  60. Almeida, J.R. The Urban Dynamic of Viseu in the Second Half of the 20th Century. Master’s Thesis, University of Porto, Porto, Portugal, 2000. [Google Scholar]
  61. Font, A.; Indovina, F.; Portas, N. La Explosión de la Ciudad: Transformaciones Territoriales en Las Regiones Urbanas de la Europa Meridional, Trad. Castellano de Luxor, 1st ed.; Ministerio de Vivienda: Barcelona, Spain, 2007.
  62. Freiria, S.; Tavares, A. Towards the acknowledgment of the urban-rural interface as a spatial category. Int. J. Energy Environ. 2011, 5, 292–300. [Google Scholar]
  63. De Noronha Vaz, E.; Nijkamp, P.; Painho, M.; Caetano, M. A multi-scenario forecast of urban change: A study on urban growth in the Algarve. Landsc. Urban Plan. 2012, 104, 201–211. [Google Scholar] [CrossRef]
  64. Mantas, V.M.; Marques, J.C.; Pereira, A.J. A geospatial approach to monitoring impervious surfaces in watersheds using Landsat data (the Mondego Basin, Portugal as a case study). Ecol. Indic. 2016, 71, 449–466. [Google Scholar] [CrossRef]
  65. Salgueiro, T.B. A Cidade em Portugal: Uma Geografia Urbana, 3rd. ed.; Cidade em Questão−8; Edição Afrontamento: Porto, Portugal, 1999. [Google Scholar]
  66. Antrop, M. Changing patterns in the urbanized countryside of Western Europe. Landsc. Ecol. 2000, 15, 257–270. [Google Scholar] [CrossRef]
  67. Rounsevell, M.D.A.; Reginster, I.; Araújo, M.B.; Carter, T.R.; Dendoncker, N.; Ewert, F.; House, J.I.; Kankaanpää, S.; Leemans, R.; Metzger, M.J.; et al. A coherent set of future land use change scenarios for Europe. Agric. Ecosyst. Environ. 2006, 114, 57–68. [Google Scholar] [CrossRef]
  68. Aguilera, F.; Valenzuela, L.; Botequilha-Leitão, A. Landscape metrics in the analysis of urban land use patterns: A case study in a Spanish metropolitan area. Landsc. Urban Plan. 2011, 99, 226–238. [Google Scholar] [CrossRef]
  69. Roose, A.; Kull, A.; Gauk, M.; Tali, T. Land use policy shocks in the post-communist urban fringe: A case study of Estonia. Land Use Policy 2013, 30, 76–83. [Google Scholar] [CrossRef]
  70. Salvati, L.; Sateriano, A.; Bajocco, S. To grow or to sprawl? Land cover relationships in a Mediterranean City Region and implications for land use management. Cities 2013, 30, 113–121. [Google Scholar] [CrossRef]
Date Format Type Image Scale Source
1958 Black and white 1:26,000 IgeoE (Army Geographic Institute)
1985 Digital Black and white 1:15,000 IGP (Portuguese Geographic Institute)
1995 Digital False color 1:10,000 CNIG (National Center of Geographical Information)
2011 Digital Color 1:10,000 IGP
Codes Dessagregated Classes Abbreviation Aggregated Classes
111 Continuous urban fabric CUF Artificial areas
112 Discontinuous urban fabric DUF
121 Industrial or commercial units ICU
122 Road and rail networks RRN
131 Mineral extraction areas MEA
133 Construction sites CS
141 Green urban áreas GUA
142 Sport and leisure facilities SLF
211 Arable land AL Agricultural areas
221 Vineyards V
222 Fruit trees and olive groves FT/OL
231 Pastures P
241 Annual crops associated with permanent crops AC
242 Complex cultivation patterns CCP
243 Agriculture with natural spaces and agroforestry areas ANS/AF
311 Broad-leaved forest BF Forest areas
312 Coniferous forest CF
313 Mixed forest MF
322 Woods W Shrub vegetation areas
324 Degraded forest areas DFA
333 Sparsely vegetated areas SVA Sparsely vegetated areas
334 Burnt areas BA
511 Watercourses WC Inland waters
512 Water bodies WB
Indicatour Equation Description
Change in land cover CHi = (pi. − p.i)/p.i (1) CHi—change for the period in column i

pi.—the column total for the grid cells

p.i—row total for the grid cells in the same category i

Conversion areas matching to gains and losses for a given year P (i).j = (pj,i − pi,j)/(pj − pi) × 100 i≠j (2) P(i).j—percentage by type j in the total conversion of category row i

pj,i and pi,j—individual entry in the change matrix

Stability grade SG = [(CixA2…4 − CixA1)/TA] × 100 (3) SG—global stability of the group of classes of land use in the year A1

for the year A2…4

CixA2…4—sum of the areas of the different group of classes (ix) at the subsequent time point

CixA1—sum of the areas of the different group of classes (ix) at time point 1

TA—total area studied (km2)

Annual rate of artificialization of surfaces AS = [UAn+i − UAi/nTAn+i] × 100% (4) AS—speed of urbanization in the study area

TAn+i—total study area to be calculated at the time point i + n

UAn+i and UAi—surfaces with urban fabric and infrastructures in the target unit at time i + n and i

n—number of years in each period

Date of Approval Planning Framework Description Enforcement Area
1947 Urbanization General Plan with proposals for historical area intervention, new residential expansion areas, and industrial areas City
1965 Hidroprojecto City Master Plan with regulation of the residential areas, conditioning urban sprawl and defining the urban contour City
1983 General City Plan—M3P, projecting new residential neighborhoods and encircling road consolidation City
1992 One layout plan with local occupation proposals and infrastructures implementation rules. Local
1993 RAN—Agricultural Protection Regime, for soils with agricultural potential. Special plans
1995 Municipal Master Plan, establishing a development strategy and a spatial plan model, and defining urban policies and regulatory guidelines for the municipal territory. Municipal
1996 REN—Ecologic Regime Protection, for sensitive ecological areas and areas susceptible to natural risk Special plans
2000 POLIS Program—Urban Infrastructures Planning and Urban Rehabilitation, providing urban interventions in disqualified areas and developing green urban areas and leisure facilities. Local
2002 to 2012 Five layout plans with local occupation proposals and infrastructure implementation rules. Local
Classes Applied Patch (nº) Area (ha)
Year Year
1958 1985 1995 2011 1958 1985 1995 2011
Continuous urban fabric 1 1 3 6 26.59 40.32 83.84 151.63
Discontinuous urban fabric 27 63 68 78 304.72 664.19 994.72 1213.80
Industrial or commercial units 2 25 26 52 17.65 118.38 176.63 269.89
Road and rail networks 3 2 1 1 30.59 33.69 92.68 152.62
Mineral extraction areas 1 2 1 10 4.18 11.83 13.48 45.58
Construction sites 2 6 9 11 13.26 24.06 45.18 86.43
Green urban areas 2 2 2 7 14.26 13.36 10.22 26.72
Sport and leisure facilities 3 4 7 12 11.58 21.96 17.16 43.06
Arable land 26 26 44 38 569.42 405.32 487.51 362.47
Vineyards 16 13 10 78.79 65.04 36.36
Fruit trees and olive groves 45 54 18 8 407.65 316.83 98.56 63.58
Pastures 43 60 45 61 650.56 519.92 301.66 247.08
Annual crops associated with permanent crops 43 48 47 34 688.14 373.77 244.16 146.09
Complex cultivation patterns 9 27 50 56 44.36 70.29 152.51 120.94
Agriculture with natural spaces and agroforestry areas 43 67 59 52 370.14 315.90 258.64 177.77
Broad-leaved forest 2 7 8 23 10.97 27.42 30.95 78.10
Coniferous forest 35 37 62 68 1082.56 910.72 924.01 671.63
Mixed forest 19 53 31 64 242.14 388.16 289.79 404.13
Woods 19 48 25 52 148.73 277.39 138.69 187.65
Degraded forest areas 30 65 77 95 280.11 332.04 505.64 463.98
Sparsely vegetated areas 3 5 4 1 37.59 21.64 23.79 9.85
Burnt areas 1 1.32
Watercourses 3 4 8 13 71.18 57.13 70.20 64.53
Water bodies 1 1 3.27 2.49
Total 361 623 609 753 5026.38 5026.38 5026.38 5026.38
Stability Grade (%) 1958–1985 1985–1995 1995–2011 1958–2011
Land-Use Disaggregated Classes Land-Use Disaggregated Classes Land-Use Disaggregated Classes Land-Use Disaggregated Classes
Leiria 37.96 43.16 48.47 27.32
Land Use Classes Evolution of Land Use Classes over the Time
Legend Decrease Maintenance Increase
1958 1985 1995 2011 1958–2011
Continuous urban fabric
Discontinuous urban fabric
Industrial or commercial units
Road and rail networks
Mineral extraction areas
Construction sites
Green urban areas
Sport and leisure facilities
Arable land
Vineyards
Fruit trees and olive groves
Pastures
Annual crops associated with permanent crops
Complex cultivation patterns
Agriculture with natural spaces and agroforestry areas
Broad-leaved forest
Coniferous forest
Mixed forest
Woods
Degraded forest areas
Sparsely vegetated areas
Burnt areas
Watercourses
Water bodies
Land Cover Loss or Gain in 2011 Type (1) % Type (2) % Type (3) % Type (4) % Type (5) % Type (6) % Type (7) % Type (8) % Type (9) %
CUF 484.62 DUF 22.32 P 15.87 CF 13.46 FT/OL 11.95 AL 8.82 CCP 8.03 ANS/AF 5.90 AC 5.54 GUA 2.60
DUF 295.44 AC 28.94 CF 15.07 P 13.79 FT/OL 14.47 ANS/AF 9.80 MF 7.69 DFA 5.48 AL 4.49 W 2.35
ICU 1400.00 P 23.51 CF 22.68 AC 13.06 AL 9.10 FT/OL 7.80 ANS/AF 6.44 W 4.60 MF 4.19 CS 2.69
RRN 406.67 CF 19.82 P 19.29 AL 12.72 AC 11.98 FT/OL 9.76 W 8.38 MF 5.39 DFA 4.91 ANS/AF 4.93
MEA W 34.95 CF 28.93 FT/OL 13.84 AL 12.54 P 10.70 ANS/AF 4.11 DUF 2.81 AC 1.16 DFA 0.75
CS 600.00 CF 39.84 P 17.59 AC 11.60 ANS/AF 9.93 W 9.33 FT/OL 8.49 MF 6.52 SVA 4.44 AL 4.37
GUA 115.38 P 50.79 FT/OL 31.19 AC 20.17 SLF 13.31 WC 3.67 DUF 6.56 CUF −26.07 AL 2.37 DFA 1.10
SLF 281.82 AL 42.04 CF 40.00 P 13.49 DUF 3.95 BF 4.08 DFA 0.50 WC 0.82 SVA 0.38 AC 0.01
AL −36.03 P 2.49 AC −8.39 ANS/AF 7.47 FT/OL −0.43 WC 1.12 CF 0.20 W 4.68 DUF 19.75 RRN 7.50
V P 47.74 DFA 20.89 AC 10.54 ANS/AF 7.02 SVA 6.64 FT/OL 4.01 MF 1.21 WC 1.16 CF 0.67
FT/OL −84.56 P −2.62 AL 0.26 ANS/AF 0.69 CF 7.20 WC −0.16 AC 5.41 DUF 38.23 SVA 0.00
P −62.15 AL −1.28 AC −7.02 FT/OL −1.39 ANS/AF 1.09 DUF 31.07 CF 3.82 CCP 1.15 WC 0.88 SVA −0.57
AC −78.60 P 5.23 FT/OL −3.43 AL 3.20 ANS/AF 4.09 CF 3.30 DFA 4.70 MF 8.18 DUF 48.54 WC 0.05
CCP 172.73 AC 49.19 FT/OL 28.57 AL 17.28 ANS/AF 16.09 DUF −11.92 P 6.07 MF 5.07 CF 6.07 WC 1.13
ANS/AF −52.03 AC −11.51 AL −8.04 P −2.30 CF 4.91 MF 25.23 FT/OL −1.24 DFA 14.95 W 2.20 DUF 46.31
BF 566.67 AL 42.93 CF 18.80 P 14.41 ANS/AF 9.56 AC 7.57 MF −0.75 W 5.63 FT/OL 4.91 DFA 1.42
CF −37.95 DFA 27.97 FT/OL −6.03 AC −4.36 P −3.75 ANS/AF −2.30 W −1.24 MF 16.07 AL −0.10 SVA −0.84
MF 66.67 CF 40.76 ANS/AF 29.97 AC 27.37 FT/OL 25.74 P 19.58 DFA −1.89 AL 10.02 W 5.25 BF 0.31
W 25.33 P 181.54 AC 73.00 CF −13.07 FT/OL 35.63 AL 24.87 ANS/AF 10.87 SVA 16.93 DFA −37.38 MF −21.85
DFA 65.84 CF 62.51 ANS/AF 15.64 FT/OL 16.82 AC 13.87 MF 1.66 AL 11.73 W 7.91 P 7.83 DUF −27.11
SVA −73.68 AC −2.53 CF 12.40 MF 7.21 FT/OL −0.01
WC −9.86 AL −34.71 P −53.39 AC −4.34 DUF 52.85 ANS/AF −5.18 BF −1.09 GUA 6.87 RRN 30.30 FT/OL 8.38
WB P 100.00
Land Cover Loss or gain in 2011 Type (10) % Type (11) % Type (12) % Type (13) % Type (14) % Type (15) % Type (16) % Type (17) % Type (18) %
CUF 484.62 DFA 2.61 WC 1.40 ICU 0.65 RRN 0.31 MF 0.51 W 0.03
DUF 295.44 CCP 1.00 RRN 0.17 WC 0.39 BF 0.18 CUF −3.07 CS 0.14 SVA 0.11 SLF −0.14
ICU 1400.00 DUF 2.32 DFA 2.12 RRN 0.93 MEA 0.77 WC 0.11 CUF −0.32 CCP 0.02
RRN 406.67 DUF −1.24 CS 1.55 CCP 1.36 WC 1.65 SVA 1.00 BF 0.42 CUF −0.32 GUA 0.33 SLF 0.00
MEA WC 0.21
CS 600.00 DFA 1.93 RRN −2.59 WC 0.12
GUA 115.38 ICU 0.11
SLF 281.82
AL −36.03 MF 7.85 GUA 0.14 CCP 6.39
V AL 0.11
FT/OL −84.56
P −62.15 DFA 3.57 MF 7.86 RRN 5.83 CS 3.19 W 17.51 CUF 4.92
AC −78.60 CCP 6.95
CCP 172.73 RRN −2.17 CS 0.56 CUF −13.11 DFA −2.08 W 0.00
ANS/AF −52.03 SVA −1.83 CCP 6.40 WC 0.18 RRN 3.13 CS 3.78
BF 566.67 WC −0.11 CCP 0.76 DUF −2.44
CF −37.95 ICU 13.92 DUF 33.33 RRN 5.89 CCP 1.13 CS 7.09 WC 0.00
MF 66.67 MEA 1.36 SVA 1.24 DUF −43.16 CCP −2.39 RRN −4.06 CS −2.94 WC 0.04
W 25.33 DUF −54.78 WC 4.84 CS −17.54 RRN −26.27 BF −9.71 MEA −37.18 CCP 0.00
DFA 65.84 SVA 1.43 CCP 0.87 CS −0.77 WC −1.03 BF −0.52 RRN −3.26 SLF −0.09 ICU −2.90
SVA −73.68
WC −9.86
WB P 100.00
Leiria
Land Cover Loss or Gain in 2011 Type 1 % Type 2 % Type 3 % Type 4 % Type 5 %
Artificial areas 371.97 Agricultural areas 66.35 Forest areas 24.52 Shrub vegetation areas 8.30 Inland waters 0.51 Sparsely vegetated areas 0.32
Agricultural areas −57.76 Forest areas 18.79 Shrub vegetation areas 15.30 Artificial areas 65.97 Inland waters 0.38 Sparsely vegetated areas −0.44
Forest areas −13.53 Agricultural areas −163.54 Shrub vegetation areas 54.70 Artificial areas 212.15 Sparsely vegetated areas −3.31 Inland waters 0.00
Shrub vegetation areas 51.74 Agricultural areas 108.07 Forest areas 44.39 Sparsely vegetated areas 4.48 Artificial areas −58.30 Inland waters 1.35
Sparsely vegetated areas −73.68 Agricultural areas 25.00
Inland waters −7.04 Agricultural areas −120.00 Forest areas 0.01 Artificial areas 160.00

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Share and Cite

Barros, J.L.; Tavares, A.O.; Monteiro, M.; Santos, P.P. Peri-Urbanization and Rurbanization in Leiria City: the Importance of a Planning Framework. Sustainability 2018, 10, 2501. https://doi.org/10.3390/su10072501

Barros JL, Tavares AO, Monteiro M, Santos PP. Peri-Urbanization and Rurbanization in Leiria City: the Importance of a Planning Framework. Sustainability. 2018; 10(7):2501. https://doi.org/10.3390/su10072501

Chicago/Turabian Style

Barros, José Leandro, Alexandre Oliveira Tavares, Mário Monteiro, and Pedro Pinto Santos. 2018. “Peri-Urbanization and Rurbanization in Leiria City: the Importance of a Planning Framework” Sustainability 10, no. 7: 2501. https://doi.org/10.3390/su10072501

You are watching: Peri-Urbanization and Rurbanization in Leiria City: the Importance of a Planning Framework. Info created by GBee English Center selection and synthesis along with other related topics.