Impact of Nutrition-Based Interventions on Athletic Performance during Menstrual Cycle Phases: A Review

Abstract

:

1. Introduction

2. Materials and Methods

3. Results

3.1. Hydration Interventions

3.2. Micronutrient Interventions

3.3. Omega-3-Fatty Acids and Phytochemical-Based Dietary Supplement Interventions

4. Discussion

4.1. Hydration Interventions

4.2. Micronutrient Interventions

4.3. Omega-3-Fatty Acids and Phytochemical-Based Dietary Supplement Interventions

4.4. Strengths and Limitations

4.5. Future Directions

5. Conclusions

Author Contributions

Funding

Institutional Review Board Statement

Informed Consent Statement

Conflicts of Interest

References

  1. Fink, J.S. Female athletes, women’s sport, and the sport media commercial complex: Have we really ‘come a long way, baby’? Sport Manag. Rev. 2015, 18, 331–342. [Google Scholar] [CrossRef]
  2. Smith, M.; Wrynn, A. Women in the Olympic and Paralympic Games. 2013. Available online: http://sharp.research.umich.edu/wp-content/uploads/2017/03/olympic_report_2012_final-4-11-13.pdf (accessed on 21 February 2021).
  3. Freemas, J.A.; Baranauskas, M.N.; Constantini, K.; Constantini, N.; Greenshields, J.T.; Mickleborough, T.D.; Raglin, J.S.; Schlader, Z.J. Exercise Performance Is Impaired during the Mid-Luteal Phase of the Menstrual Cycle. Med. Sci. Sports Exerc. 2020, 3, 442–452. [Google Scholar] [CrossRef] [PubMed]
  4. Lebrun, C.M.; McKenzie, D.C.; Prior, J.C.; Taunton, J.E. Effects of menstrual cycle phase on athletic performance. Med. Sci. Sports Exerc. 1995, 27, 437–444. [Google Scholar] [CrossRef]
  5. Oosthuyse, T.; Bosch, A.N. The effect of the menstrual cycle on exercise metabolism: Implications for exercise performance in eumenorrhoeic women. Sports Med. 2010, 40, 207–227. [Google Scholar] [CrossRef] [PubMed]
  6. Giersch, G.E.W.; Charkoudian, N.; Stearns, R.L.; Casa, D.J. Fluid Balance and Hydration Considerations for Women: Review and Future Directions. Sports Med. 2020, 50, 253–261. [Google Scholar] [CrossRef]
  7. De Jonge, X.A.K.J. Effects of the menstrual cycle on exercise performance. Sports Med. 2003, 33, 833–851. [Google Scholar] [CrossRef] [PubMed]
  8. Bruinvels, G.; Burden, R.J.; McGregor, A.J.; Ackerman, K.E.; Dooley, M.; Richards, T.; Pedlar, C. Sport, exercise and the menstrual cycle: Where is the research? Br. J. Sports Med. 2017, 51, 487–488. [Google Scholar] [CrossRef] [PubMed]
  9. Giersch, G.E.; Morrissey, M.C.; Katch, R.K.; Colburn, A.T.; Sims, S.T.; Stachenfeld, N.S.; Casa, D.J. Menstrual cycle and thermoregulation during exercise in the heat: A systematic review and meta-analysis. J. Sci. Med. Sport 2020, 23, 1134–1140. [Google Scholar] [CrossRef] [PubMed]
  10. Aguree, S.; Bethancourt, H.J.; Taylor, L.A.; Rosinger, A.Y.; Gernand, A.D. Plasma volume variation across the menstrual cycle among healthy women of reproductive age: A prospective cohort study. Physiol. Rep. 2020, 8, e14418. [Google Scholar] [CrossRef]
  11. Wenner, M.M.; Stachenfeld, N.S. Blood pressure and water regulation: Understanding sex hormone effects within and between men and women. J. Physiol. 2012, 590, 5949–5961. [Google Scholar] [CrossRef][Green Version]
  12. Sawka, M.N.; Burke, L.M.; Eichner, E.R.; Maughan, R.J.; Montain, S.J.; Stachenfeld, N.S. Exercise and fluid replacement. Med. Sci. Sports Exerc. 2007, 39, 377–390. [Google Scholar] [CrossRef][Green Version]
  13. MacLeod, H.; Sunderland, C. Previous-day hypohydration impairs skill performance in elite female field hockey players. Scand. J. Med. Sci. Sport 2012, 22, 430–438. [Google Scholar] [CrossRef] [PubMed]
  14. Garcia, A.M.C.; Lacerda, M.G.; Fonseca, I.A.T.; Reis, F.M.; Rodrigues, L.O.C.; Silami-Garcia, E. Luteal phase of the menstrual cycle increases sweating rate during exercise. Brazilian J. Med. Biol. Res. 2006, 39, 1255–1261. [Google Scholar] [CrossRef] [PubMed][Green Version]
  15. Kim, I.; Yetley, E.A.; Calvo, M.S. Variations menstrual during the menstrual cycle. Am. J. Clin. Nutr. 1993, 58, 705–709. [Google Scholar] [CrossRef] [PubMed]
  16. Woods, A.; Garvican-Lewis, L.A.; Saunders, P.U.; Lovell, G.; Hughes, D.; Fazakerley, R.; Anderson, B.; Gore, C.J.; Thompson, K.G. Four weeks of iv iron supplementation reduces perceived fatigue and mood disturbance in distance runners. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed]
  17. Vaucher, P.; Druais, P.L.; Waldvogel, S.; Favrat, B. Effect of iron supplementation on fatigue in nonanemic menstruating women with low ferritin: A randomized controlled trial. CMAJ 2012, 184, 1247–1254. [Google Scholar] [CrossRef][Green Version]
  18. Brown, D.M.Y.; Graham, J.D.; Innes, K.I.; Harris, S.; Flemington, A.; Bray, S.R. Effects of Prior Cognitive Exertion on Physical Performance: A Systematic Review and Meta-Analysis; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; Volume 50. [Google Scholar]
  19. Peinado, A.; Alfaro-Magallanes, V.; Romero-Parra, N.; Barba-Moreno, L.; Rael, B.; Maestre-Cascales, C.; Rojo-Tirado, M.; Castro, E.; Benito, P.; Ortega-Santos, C.; et al. Methodological Approach of the Iron and Muscular Damage: Female Metabolism and Menstrual Cycle during Exercise Project (IronFEMME Study). Int. J. Environ. Res. Public Health 2021, 18, 735. [Google Scholar] [CrossRef]
  20. Papageorgiou, M.; Elliott-Sale, K.J.; Parsons, A.; Tang, J.C.; Greeves, J.P.; Fraser, W.D.; Sale, C. Effects of reduced energy availability on bone metabolism in women and men. Bone 2017, 105, 191–199. [Google Scholar] [CrossRef][Green Version]
  21. Levers, K.; Dalton, R.; Galvan, E.; O’Connor, A.; Goodenough, C.; Simbo, S.; Mertens-Talcott, S.U.; Rasmussen, C.; Greenwood, M.; Riechman, S.; et al. Effects of powdered Montmorency tart cherry supplementation on acute endurance exercise performance in aerobically trained individuals. J. Int. Soc. Sports Nutr. 2016, 13, 22. [Google Scholar] [CrossRef][Green Version]
  22. García-Flores, L.A.; Medina, S.; Cejuela-Anta, R.; Martínez-Sanz, J.M.; Abellán, Á.; Genieser, H.G.; Ferreres, F.; Gil-Izquierdo, Á. DNA catabolites in triathletes: Effects of supplementation with an aronia-citrus juice (polyphenols-rich juice). Food Funct. 2016, 7, 2084–2093. [Google Scholar] [CrossRef][Green Version]
  23. McAnulty, S.R.; Nieman, D.C.; McAnulty, L.S.; Lynch, W.S.; Jin, F.; Henson, D.A. Effect of mixed flavonoids, n-3 fatty acids, and vitamin C on oxidative stress and antioxidant capacity before and after intense cycling. Int. J. Sport Nutr. Exerc. Metab. 2011, 21, 328–337. [Google Scholar] [CrossRef] [PubMed]
  24. Mestre-Alfaro, A.; Ferrer, M.D.; Sureda, A.; Tauler, P.; Martínez, E.; Bibiloni, M.M.; Micol, V.; Tur, J.A.; Pons, A. Phytoestrogens enhance antioxidant enzymes after swimming exercise and modulate sex hormone plasma levels in female swimmers. Eur. J. Appl. Physiol. 2011, 111, 2281–2294. [Google Scholar] [CrossRef]
  25. Martin-Rincon, M.; Gelabert-Rebato, M.; Galvan-Alvarez, V.; Gallego-Selles, A.; Martinez-Canton, M.; Lopez-Rios, L.; Wiebe, J.C.; Martin-Rodriguez, S.; Arteaga-Ortiz, R.; Dorado, C.; et al. Supplementation with a mango leaf extract (Zynamite ®) in combination with quercetin attenuated muscle damage and pain and accelerates recovery after strenuous damaging exercise. Nutrients. 2020, 12, 614. [Google Scholar] [CrossRef][Green Version]
  26. Toscano, L.T.; Tavares, R.L.; Toscano, L.T.; Da Silva, C.S.O.; De Almeida, A.E.M.; Biasoto, A.; Gonçalves, M.D.C.R.; Silva, A.S. Potential ergogenic activity of grape juice in runners. Appl. Physiol. Nutr. Metab. 2015, 40, 899–906. [Google Scholar] [CrossRef][Green Version]
  27. Trexler, E.T.; Smith-Ryan, A.E.; Melvin, M.N.; Roelofs, E.J.; Wingfield, H.L. The effects of pomegranate extract on blood flow and running time to exhaustion. Appl. Physiol. Nutr. Metab. 2014, 39, 1038–1042. [Google Scholar] [CrossRef] [PubMed][Green Version]
  28. Rodriguez-Giustiniani, P.; Galloway, S.D. Influence of Peak Menstrual Cycle Hormonal Changes on Restoration of Fluid Balance After Induced Dehydration. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 651–657. [Google Scholar] [CrossRef] [PubMed]
  29. Harris, P.R.; Keen, D.A.; Constantopoulos, E.; Weninger, S.N.; Hines, E.; Koppinger, M.P.; Khalpey, Z.I.; Konhilas, J.P. Fluid type influences acute hydration and muscle performance recovery in human subjects. J. Int. Soc. Sports Nutr. 2019, 16, 15. [Google Scholar] [CrossRef][Green Version]
  30. Miller, K.C. Electrolyte and Plasma Responses After Pickle Juice, Mustard, and Deionized Water Ingestion in Dehydrated Humans. J. Athl. Train. 2014, 49, 360–367. [Google Scholar] [CrossRef][Green Version]
  31. Chryssanthopoulos, C.; Ziaras, C.; Oosthuyse, T.; Lambropoulos, I.; Giorgios, P.P.; Zacharogiannis, E.; Philippou, A.; Maridaki, M. Carbohydrate mouth rinse does not affect performance during a 60-min running race in women. J. Sports Sci. 2017, 36, 824–833. [Google Scholar] [CrossRef]
  32. Konishi, K.; Kimura, T.; Yuhaku, A.; Kurihara, T.; Fujimoto, M.; Hamaoka, T.; Sanada, K. Mouth rinsing with a carbohydrate solution attenuates exercise-induced decline in executive function. J. Int. Soc. Sports Nutr. 2017, 14, 45. [Google Scholar] [CrossRef][Green Version]
  33. Gui, Z.; Sun, F.; Si, G.; Chen, Y. Effect of protein and carbohydrate solutions on running performance and cognitive function in female recreational runners. PLoS ONE 2017, 12, e0185982. [Google Scholar] [CrossRef][Green Version]
  34. Sun, F.-H.; Wong, S.H.-S.; Chen, S.-H.; Poon, T.-C. Carbohydrate electrolyte solutions enhance endurance capacity in active females. Nutrients 2015, 7, 3739–3750. [Google Scholar] [CrossRef][Green Version]
  35. Ramos-Jiménez, A.; Hernández-Torres, R.P.; Wall-Medrano, A.; Torres-Durán, P.V.; Juárez-Oropeza, M.A.; Viloria, M.; Villalobos-Molina, R. Respuestas fisiológicas asociadas al género e hidratación durante el spinning. Nutr. Hosp. 2014, 29, 644–651. [Google Scholar] [CrossRef] [PubMed]
  36. Logan-Sprenger, H.M.; Spriet, L.L. The Acute Effects of Fluid Intake on Urine Specific Gravity and Fluid Retention in a Mildly Dehydrate State. J. Strength Cond. Res. 2013, 27, 1002–1008. [Google Scholar] [CrossRef]
  37. West, J.S.; Ayton, T.; Wallman, K.E.; Guelfi, K.J. The effect of 6 days of sodium phosphate supplementation on appetite, energy intake, and aerobic capacity in trained men and women. Int. J. Sport Nutr. Exerc. Metab. 2012, 22, 422–429. [Google Scholar] [CrossRef] [PubMed][Green Version]
  38. Ali, A.; Gardiner, R.; Foskett, A.; Gant, N. Fluid balance, thermoregulation and sprint and passing skill performance in female soccer players. Scand. J. Med. Sci. Sports 2011, 21, 437–445. [Google Scholar] [CrossRef] [PubMed]
  39. Haakonssen, E.C.; Ross, M.L.; Knight, E.J.; Cato, L.E.; Nana, A.; Wluka, A.; Cicuttini, F.M.; Wang, B.H.; Jenkins, D.G.; Burke, L.M. The effects of a calcium-rich pre-exercise meal on biomarkers of calcium homeostasis in competitive female cyclists a randomised crossover trial. PLoS ONE 2015, 10, e0123302. [Google Scholar] [CrossRef][Green Version]
  40. Dellavalle, D.M.; Haas, J.D. Iron supplementation improves energetic efficiency in iron-depleted female rowers. Med. Sci. Sports Exerc. 2014, 46, 1204–1215. [Google Scholar] [CrossRef]
  41. McKinley-Barnard, S.K.; Andre, T.L.; Gann, J.J.; Hwang, P.S.; Willoughby, D.S. Effectiveness of fish oil supplementation in attenuating exercise-induced muscle damage in women during midfollicular and midluteal menstrual phases. J. Strength Cond. Res. 2018, 32, 1601–1612. [Google Scholar] [CrossRef]
  42. Hiles, A.M.; Flood, T.R.; Lee, B.J.; Wheeler, L.E.; Costello, R.; Walker, E.F.; Ashdown, K.M.; Kuennen, M.R.; Willems, M.E. Dietary supplementation with New Zealand blackcurrant extract enhances fat oxidation during submaximal exercise in the heat. J. Sci. Med. Sport 2020, 23, 908–912. [Google Scholar] [CrossRef]
  43. Lara, B.; Hellín, J.G.; Ruíz-Moreno, C.; Romero-Moraleda, B.; del Coso, J. Acute caffeine intake increases performance in the 15-s Wingate test during the menstrual cycle. Br. J. Clin. Pharmacol. 2020, 86, 745–752. [Google Scholar] [CrossRef][Green Version]
  44. Romero-Moraleda, B.; del Coso, J.; Gutiérrez-Hellín, J.; Lara, B. The effect of caffeine on the velocity of half-squat exercise during the menstrual cycle: A randomized controlled trial. Nutrients 2019, 11, 2662. [Google Scholar] [CrossRef][Green Version]
  45. Brown, M.A.; Stevenson, E.J.; Howatson, G. Montmorency tart cherry (Prunus cerasus L.) supplementation accelerates recovery from exercise-induced muscle damage in females. Eur. J. Sport Sci. 2019, 19, 95–102. [Google Scholar] [CrossRef] [PubMed]
  46. Gutiérrez-Hellín, J.; del Coso, J. Effects of p -Synephrine and Caffeine Ingestion on Substrate Oxidation during Exercise. Med. Sci. Sports Exerc. 2018, 50, 1899–1906. [Google Scholar] [CrossRef]
  47. Strauss, J.A.; Willems, M.E.T.; Shepherd, S.O. New Zealand blackcurrant extract enhances fat oxidation during prolonged cycling in endurance-trained females. Eur. J. Appl. Physiol. 2018, 118, 1265–1272. [Google Scholar] [CrossRef][Green Version]
  48. Buck, C.; Guelfi, K.; Dawson, B.; McNaughton, L.; Wallman, K. Effects of sodium phosphate and caffeine loading on repeated-sprint ability. J. Sports Sci. 2015, 33, 1971–1979. [Google Scholar] [CrossRef] [PubMed]
  49. Buck, C.L.; Henry, T.; Guelfi, K.; Dawson, B.; McNaughton, L.R.; Wallman, K. Effects of sodium phosphate and beetroot juice supplementation on repeated-sprint ability in females. Eur. J. Appl. Physiol. 2015, 115, 2205–2213. [Google Scholar] [CrossRef]
  50. Braakhuis, A.J.; Hopkins, W.G.; Lowe, T.E. Effects of dietary antioxidants on training and performance in female runners. Eur. J. Sport Sci. 2014, 14, 160–168. [Google Scholar] [CrossRef]
  51. Wiecek, M.; Szymura, J.; Maciejczyk, M.; Cempla, J.; Szygula, Z. Effect of sex and menstrual cycle in women on starting speed, anaerobic endurance and muscle power. Acta Physiol. Hung. 2016, 103, 127–132. [Google Scholar] [CrossRef][Green Version]
  52. Brener, W.; Hendrix, T.R.; McHugh, P.R. Regulation of the Gastric Emptying of Glucose. Gastroenterology 1983, 85, 76–82. [Google Scholar] [CrossRef]
  53. Billich, C.O.; Levitan, R. Effects of sodium concentration and osmolality on water and electrolyte absorption form the intact human colon. J. Clin. Investig. 1969, 48, 1336–1347. [Google Scholar] [CrossRef] [PubMed][Green Version]
  54. Hamilton, M.T.; Gonzalez-Alonso, J.; Montain, S.J.; Coyle, E.F. Fluid replacement and glucose infusion during exercise prevent cardiovascular drift. J. Appl. Physiol. 1991, 71, 871–877. [Google Scholar] [CrossRef] [PubMed][Green Version]
  55. Caballero-Plasencia, A.M.; Valenzuela-Barranco, M.; Martín-Ruiz, J.L.; Herrerías-Gutiérrez, J.M.; Esteban-Carretero, J.M. Are there changes in gastric emptying during the menstrual cycle? Scand. J. Gastroenterol. 1999, 34, 772–776. [Google Scholar] [CrossRef]
  56. Zhou, Z.; Bian, C.; Luo, Z.; Guille, C.; Ogunrinde, E.; Wu, J.; Zhao, M.; Fitting, S.; Kamen, D.L.; Oates, J.C.; et al. Progesterone decreases gut permeability through upregulating occludin expression in primary human gut tissues and Caco-2 cells. Sci. Rep. 2019, 9, 8367. [Google Scholar] [CrossRef][Green Version]
  57. Stone, T.; Earley, R.L.; Burnash, S.G.; Wingo, J.E. Menstrual cycle effects on cardiovascular drift and maximal oxygen uptake during exercise heat stress. Eur. J. Appl. Physiol. 2021, 121, 561–572. [Google Scholar] [CrossRef]
  58. Stoffel, N.U.; von Siebenthal, H.K.; Moretti, D.; Zimmermann, M.B. Oral iron supplementation in iron-deficient women: How much and how often? Mol. Aspects Med. 2020, 75, 100865. [Google Scholar] [CrossRef]
  59. Trumbo, P.; Yates, A.A.; Schlicker, S.; Poos, M. Dietary reference intakes: Vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. J. Am. Diet. Assoc. 2001, 101, 294–301. [Google Scholar] [CrossRef]
  60. Davies, K.J.A.; Maguire, J.J.; Brooks, G.A. Muscle mitochondrial bioenergetics, oxygen supply, and work capacity during dietary iron deficiency and repletion. Am. J. Physiol. Endocrinol. Metab. 1982, 5. [Google Scholar] [CrossRef]
  61. Keller, M.F.; Harrison, M.L.; Lalande, S. Impact of Menstrual Blood Loss and Oral Contraceptive Use on Oxygen-carrying Capacity. Med. Sci. Sports Exerc. 2020, 52, 1414–1419. [Google Scholar] [CrossRef]
  62. Institute of Medicine (US). Committee to Review Dietary Reference Intakes for Vitamin D and Calcium; Ross, A., Taylor, C., Yaktine, A., Eds.; National Academy Press: Washington, DC, USA, 2011; p. 5. [Google Scholar]
  63. Gardinier, J.D.; Mohamed, F.; Kohn, D.H. PTH signaling during exercise contributes to bone adaptation. J. Bone Miner. Res. 2015, 30, 1053–1063. [Google Scholar] [CrossRef][Green Version]
  64. Raisz, L.G. Bone Resorption in Tissue Culture. Factors Influencing the Response To Parathyroid Hormone. J. Clin. Investig. 1965, 44, 103–116. [Google Scholar] [CrossRef] [PubMed][Green Version]
  65. Fox, J.; Miller, M.A.; Stroup, G.B.; Nemeth, E.F.; Miller, S.C. Plasma levels of parathyroid hormone that induce anabolic effects in bone of ovariectomized rats can be achieved by stimulation of endogenous hormone secretion. Bone 1997, 21, 163–169. [Google Scholar] [CrossRef]
  66. Chiu, K.M.; Ju, J.; Mayes, D.; Bacchetti, P.; Weitz, S.; Arnaud, C.D. Changes in bone resorption during the menstrual cycle. J. Bone Miner. Res. 1999, 14, 609–615. [Google Scholar] [CrossRef]
  67. Kuo, I.Y.; Ehrlich, B.E. Signaling in muscle contraction. Cold Spring Harb. Perspect. Biol. 2015, 7. [Google Scholar] [CrossRef]
  68. Weber, A.; Herz, R. The relationship between caffeine contracture of intact muscle and the effect of caffeine on reticulum. J. Gen. Physiol. 1968, 52, 750–759. [Google Scholar] [CrossRef][Green Version]
  69. Allen, D.G.; Westerblad, H. The effects of caffeine on intracellular calcium, force and the rate of relaxation of mouse skeletal muscle. J. Physiol. 1995, 487, 331–342. [Google Scholar] [CrossRef]
  70. Kotsopoulos, J.; Eliassen, A.H.; Missmer, S.A.; Hankinson, S.E.; Tworoger, S.S. Relationship between caffeine intake and plasma sex hormone concentrations in premenopausal and postmenopausal women. Cancer 2009, 115, 2765–2774. [Google Scholar] [CrossRef][Green Version]
  71. Tsuda, T.; Ueno, Y.; Kojo, H.; Yoshikawa, T.; Osawa, T. Gene expression profile of isolated rat adipocytes treated with anthocyanins. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2005, 1733, 137–147. [Google Scholar] [CrossRef]
  72. Ignarro, L.J.; Lippton, H.; Edwards, J.C.; Baricos, W.H.; Hyman, A.L.; Kadowitz, P.J.; Gruetter, C.A. Mechanism of vascular smooth muscle relaxation by organic nitrates, nitrites, nitroprusside and nitric oxide: Evidence for the involvement of S-Nitrosothiols as active intermediates. J. Pharmacol. Exp. Ther. 1981, 218, 739–749. [Google Scholar]
  73. Mason, D.T. Afterload reduction and cardiac performance. Am. J. Med. 1978, 65, 106–125. [Google Scholar] [CrossRef]
  74. Hashimoto, M.; Akishita, M.; Eto, M.; Ishikawa, M.; Kozaki, K.; Toba, K.; Sagara, Y.; Taketani, Y.; Orimo, H.; Ouchi, Y. Modulation of Endoethelium-Dependent Flow-Mediated Dilation of the BRachial Artery by Sex and Menstrual Cycle. Circulation 1995, 92, 3431–3435. [Google Scholar] [CrossRef]
  75. Zhang, Z.; Fulgoni, V.L.; Kris-Etherton, P.M.; Mitmesser, S.H. Dietary intakes of EPA and DHA omega-3 fatty acids among US childbearing-age and pregnant women: An analysis of NHANES 2001–2014. Nutrients 2018, 10, 416. [Google Scholar] [CrossRef][Green Version]
  76. Gray, P.; Chappell, A.; Jenkinson, A.M.E.; Thies, F.; Gray, S.R. Fish oil supplementation reduces markers of oxidative stress but not muscle soreness after eccentric exercise. Int. J. Sport Nutr. Exerc. Metab. 2014, 24, 206–214. [Google Scholar] [CrossRef][Green Version]
  77. Carter, A.; Dodbridge, J.; Hackney, A.C. Influence of Estrogen on Markers of Muscle Tissue Damage Following Eccentric Exercise. Hum. Physiol. 2001, 27, 626–630. [Google Scholar] [CrossRef]
Authors, Year

(Country)

Study Design Participants Menstrual Cycle Reported Nutrition-Based Intervention and Duration Assessment of Athletic Outcome
Rodriguez-Giustiniani and Galloway, 2019

(United Kingdom)

[28]

Crossover study Women (n = 10)

Age: 25 ± 7 years

LFP: between days 10 and 13

MLP: between days 18 and 23

100% body mass loss volume:

6.4% CHO, 25 mM Na+,

3.5 mM K+ beverage

Consumed in four equal phases over 30 min

↑ Fluid retention in LFP (trivial effect)

∅ Menstrual phase on degree of dehydration, urine volume, net fluid balance, electrolyte balance, urine osmolality, thirst intensity

Harris et al., 2019

(United States) [29]

Randomized counterbalanced crossover study Women (n = 8)

Age: 21 ± 2 years

Early in cycle 100% body mass loss volume:

Deep-ocean mineral water

59.2 g/L CHO, 450.9 mg/L Na+, 408.3 mg/L Cl−, 126.8 mg/L K+ beverage

Spring water

Consumed in two phases 30 min apart

Rehydrating with deep-ocean mineral water:

↑ Peak torque

↓ Salivary osmolality

Chryssanthopoulos

et al., 2018

(Greece) [31]

Double-blind placebo-controlled RCT Women (n = 15)

Age: 43 ± 2 years

FP:

between days 3 and 10

25 mL 6.4% CHO beverage

Rinsed in mouth for 5 s prior to exercise and at minute 15, 30, and 45

∅ Distance traveled, HR, fluid loss
Konishi et al., 2017

(Japan) [32]

Single-blind RCT Women (n = 4)

Age: 24 ± 2 years

FP 25 mL 6.4% maltodextrin solution

Rinsed in mouth for 5 s prior to exercise

↓ Reaction time, RPE plasma E and NE

∅ Executive function accuracy, plasma ACTH

Gui et al., 2017

(Hong Kong) [33]

Randomized, placebo-controlled crossover study Women (n = 11)

Age: 32 ± 7 years

Within 10 days after menses ended 150 mL 6% CES or

150 mL 4% CHO + 2% PRO CES-P

Consumed every 2.5 km for 21 km run

CES: ↓ 21 km time

CES-P: ∅ 21 km time

CES and CES-P: ∅ USG, RPE, cognitive reaction time

Sun et al., 2015

(China) [34]

Double-blind placebo-controlled RCT Women (n = 8)

Age: 28 ± 2 years

FP 3 mL·kg−1 body mass 6% CES

Consumed every 20 min until exhaustion

↑ Exercise time to exhaustion, plasma glucose from 15 min mark

∅ RER, blood glucose, lactate levels, HR, RPE, PTS, PAS

Miller, 2014

(United States) [30]

Randomized, crossover study Women (n = 6)

Age: 25 ± 2 years

FP 1 mL·kg−1 body mass pickle juice

Bolus of mustard with similar [Na+] to pickle juice

Consumed in full in 2.5 min

∅ Plasma Na+ or K+ concentration, plasma osmolality, plasma volume
Ramos-Jiménez

et al., 2014

(Mexico) [35]

RCT Women (n = 9)

Age: 24 ± 5 years

FP 100% of body mass loss:

Plain water hydration or

324 mmol/L CHO, 19.9 mmol/L Na+, 3.2 mmol/L K+ beverage

Consumed every 15 min for 90 min

Both water and CHO-based beverage:

↓ Loss of body mass, body temperature, mean blood pressure, HR

∅ Distance traveled, resistance applied to ergometer

Logan-Sprenger

and Spriet, 2013

(Canada) [36]

Randomized, crossover study Women (n = 6)

Age: 25 ± 1 years

FP 600 mL of each:

Water

40 mM Na+ salt water

3% CES

6% CES

Consumed in two phases 15 min apart

Starting in a hypohydrated state,

all 4 beverages:

↓ USG

↓ Urine volume

West et al., 2012

(Australia) [37]

Double-blind placebo-controlled

counterbalanced RCT

Women (n = 9)

Age: 23 ± 3 years

FP: between days 1 and 5 50 mL·kg−1 fat-free mass of sodium phosphate

Consumed daily for 6 days with fluid

∅ VO2peak, running speed, HR
Ali et al., 2011

(New Zealand) [38]

Randomized, crossover study Women (n = 10)

Age: 26 ± 5

LP 3 mL·kg−1 body mass water

Consumed every 15 min for 90 min

↓ Change in body mass, core body temperature, HR, blood lactate concentration, RPE

∅ Sprint performance

Authors, Year

(Country)

Study Design Participants Menstrual Cycle Reported Nutrition-Based Intervention and Duration Assessment of Athletic Outcome
Haakonssen

et al., 2015

(Japan) [39]

Randomized counterbalanced crossover study Women (n = 32)

Age: 24 ± 4 years

LP or FP Pre-exercise meal with 1352 ± 53 mg calcium

Consumed 2 h before exercise

↓ Exercise-induced bone resorption markers, hematocrit percentage

∅ Sweat calcium levels, 10 min time trial

Dellavalle

and Haas, 2013

(United States) [40]

Double-blind placebo-controlled RCT Women (n = 31)

Age: 20 ± 1 years

Menstrual status quantified daily 50 mg iron sulfate

Consumed twice per day for 6 weeks

↑ Gross efficiency, absolute VO2peak, maximal work rate

↓ Energy expenditure, maximal blood lactate concentration

∅ Endurance time trial, relative VO2peak, HR maximum, RER

Authors, Year

(Country)

Study Design Participants Menstrual Cycle Reported Nutrition-Based Intervention and Duration Assessment of Athletic Outcome
Hiles et al., 2020

(United Kingdom) [42]

Randomized, placebo-controlled double-blind crossover study Women (n = 6)

Age: 21 ± 2 years

MLP 300 mg New Zealand BC extract

Consumed twice daily for 7 days

↑ Fat oxidation

↓ RER, CHO oxidation

∅ HR, VO2, VCO2; rectal, skin, body temperature; whole body sweat rate

Lara et al., 2020

(Spain) [43]

Double-blind, placebo-controlled, crossover RCT Women (n = 13)

Age: 31 ± 6 years

EFP, preovulatory phase, MLP 3 mg·kg−1 body mass caffeine

Consumed 60 min prior to exercise

In EFP, preovulatory phase, MLP:

↑ 15 s Wingate peak power

Romero-Moraleda

et al., 2019

(Spain) [44]

Double-blind placebo-controlled crossover RCT Women (n = 13)

Age: 31 ± 6 years

EFP

LFP

MLP

3 mg·kg−1 body mass caffeine

Consumed 45 min prior to exercise

In EFP and LFP:

↑ Peak velocity at 60% 1-RM

Brown et al., 2019

(United Kingdom) [45]

Double-blind placebo-controlled RCT Women (n = 20)

Age: 19 ± 1 years

ELP to MLP

or 14 days before withdrawal bleed

30 mL Montmorency cherry concentrate

Consumed twice daily for 8 days

↑ Pain pressure threshold at rectus femoris, CMJ muscle recovery

↓ Rating of muscle soreness

∅ Hamstring stiffness and flexibility, maximum voluntary isometric contraction, 30 m sprint time, repeated sprint time, RPE

McKinley-Barnard

et al., 2018

(United States) [41]

Double-blind placebo-controlled RCT Women (n = 22)

Age: 21 ± 1 years

MFP: day 6

MLP: day 21

2.4 g EPA and 1.8 g DHA (FO)

Consumed daily for 21 days

FO: ↑ Perceived muscle soreness, serum estradiol

FO during MFP:

↓ Serum myoglobin

FO and cycle phase:

∅ Muscular strength

Cycle phase: ∅ Perceived muscle soreness

Gutierrez-Hellin

and Del Coso, 2018

(Spain) [46]

Double-blind placebo-controlled RCT Women (n = 2)

Age: 25 ± 7 years

LP 3 mg·kg−1 caffeine

3 mg·kg−1 p-synephrine

Consumed 60 min prior to exercise

Caffeine: ↑ Fat oxidation at 30–70% VO2max

Caffeine + p-synephrine: ↑ Fat oxidation at 40% and 70% VO2max

Caffeine: ↑ Muscle power and endurance perception

Caffeine: ↓ CHO oxidation at 70% VO2max

Caffeine: ↓ Perceived exertion

p-synephrine: ↓ CHO oxidation at 60% VO2max

∅ Energy expenditure

Strauss et al., 2018

(United Kingdom) [47]

Randomized, placebo-controlled double-blind crossover study Women (n = 16)

Age: 28 ± 8 years

FP: between days 9 and 11 600 mg·day−1 New Zealand BC extract

Consumed daily for 7 days

↑ Fat oxidation

↓ CHO oxidation

∅ HR, VO2, VCO2

Buck et al., June 2015

(Australia) [49]

Randomized, placebo-controlled double-blind Latin-square design Women (n = 13)

Age: 26 ± 2 years

FP 50 mg·L−1 SP

Consumed daily for 6 days

70 mL concentrated BJ

Consumed 3 h prior to exercise

SP: ↓ Set 1, 2, overall total sprint time, best sprint time

SP + BJ: ↓ Set 2 total sprint time vs. placebo

BJ: ∅ total sprint time, best sprint time

∅ HR, RPE, blood lactate

Buck et al.,

March 2015

(Australia) [48]

Randomized, placebo-controlled double-blind Latin-square design Women (n = 12)

Age: 26 ± 2 years

FP 50 mg·L−1 SP

Consumed daily for 6 days

6 mg·kg−1 body mass caffeine

Consumed 1 h prior to exercise

SP + Caffeine:

↓ Set 1, 2, 3, and overall total sprint time vs. placebo

SP + Caffeine:

↓ Set 3 and overall total sprint time vs. Caffeine and vs. SP

SP: ↓ Set 1 and 3 total sprint time vs. placebo

SP + Caffeine: ↓ Best sprint time

∅ HR, RPE

Braakhuis et al., 2014

(Australia) [50]

Randomized, placebo-controlled crossover study Women (n = 23)

Age: 31 ± 8 years

Cycle recorded over 3 weeks 0.5 L VC juice or BC juice

Consumed daily for 21 days

VC: ↓ Training speed

VC and BC: ↑ Running times

BC: ↓ 5 km time trial in fast runners

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Share and Cite

Helm, M.M.; McGinnis, G.R.; Basu, A. Impact of Nutrition-Based Interventions on Athletic Performance during Menstrual Cycle Phases: A Review. Int. J. Environ. Res. Public Health 2021, 18, 6294. https://doi.org/10.3390/ijerph18126294

Helm MM, McGinnis GR, Basu A. Impact of Nutrition-Based Interventions on Athletic Performance during Menstrual Cycle Phases: A Review. International Journal of Environmental Research and Public Health. 2021; 18(12):6294. https://doi.org/10.3390/ijerph18126294

Chicago/Turabian Style

Helm, Macy M., Graham R. McGinnis, and Arpita Basu. 2021. “Impact of Nutrition-Based Interventions on Athletic Performance during Menstrual Cycle Phases: A Review” International Journal of Environmental Research and Public Health 18, no. 12: 6294. https://doi.org/10.3390/ijerph18126294

You are watching: Impact of Nutrition-Based Interventions on Athletic Performance during Menstrual Cycle Phases: A Review. Info created by GBee English Center selection and synthesis along with other related topics.