Geoms – Use a geom function to represent data points, use the geom’s aesthetic properties to represent variables. Each function returns a layer.
Three Variables
l + geom_contour(aes(z = z))
x, y, z, alpha, colour, group, linetype, size,
weight
seals\$z <- with(seals, sqrt(delta_long^2 + delta_lat^2))
l <- ggplot(seals, aes(long, lat))
l + geom_raster(aes(fill = z), hjust=0.5,
vjust=0.5, interpolate=FALSE)
x, y, alpha, fill
l + geom_tile(aes(fill = z))
x, y, alpha, color, fill, linetype, size, width
Two Variables
Discrete X, Discrete Y
g <- ggplot(diamonds, aes(cut, color))
g + geom_count()
x, y, alpha, color, fill, shape, size, stroke
Discrete X, Continuous Y
f <- ggplot(mpg, aes(class, hwy))
f + geom_col()
x, y, alpha, color, fill, group, linetype, size
f + geom_boxplot()
x, y, lower, middle, upper, ymax, ymin, alpha,
color, fill, group, linetype, shape, size, weight
f + geom_dotplot(binaxis = “y”,
stackdir = “center”)
x, y, alpha, color, fill, group
f + geom_violin(scale = “area”)
x, y, alpha, color, fill, group, linetype, size,
weight
Continuous X, Continuous Y
e <- ggplot(mpg, aes(cty, hwy))
e + geom_label(aes(label = cty), nudge_x = 1,
nudge_y = 1, check_overlap = TRUE)
x, y, label, alpha, angle, color, family, fontface,
hjust, lineheight, size, vjust
e + geom_jitter(height = 2, width = 2)
x, y, alpha, color, fill, shape, size
e + geom_point()
x, y, alpha, color, fill, shape, size, stroke
e + geom_quantile()
x, y, alpha, color, group, linetype, size, weight
e + geom_rug(sides = “bl”)
x, y, alpha, color, linetype, size
e + geom_smooth(method = lm)
x, y, alpha, color, fill, group, linetype, size, weight
e + geom_text(aes(label = cty), nudge_x = 1,
nudge_y = 1, check_overlap = TRUE)
x, y, label, alpha, angle, color, family, fontface,
hjust, lineheight, size, vjust
AB
C
A
B
C
Continuous Function
i <- ggplot(economics, aes(date, unemploy))
i + geom_area()
x, y, alpha, color, fill, linetype, size
i + geom_line()
x, y, alpha, color, group, linetype, size
i + geom_step(direction = “hv”)
x, y, alpha, color, group, linetype, size
Continuous Bivariate Distribution
h <- ggplot(diamonds, aes(carat, price))
j + geom_crossbar(fatten = 2)
x, y, ymax, ymin, alpha, color, fill, group,
linetype, size
j + geom_errorbar()
x, ymax, ymin, alpha, color, group, linetype,
size, width (also geom_errorbarh())
j + geom_linerange()
x, ymin, ymax, alpha, color, group, linetype, size
j + geom_pointrange()
x, y, ymin, ymax, alpha, color, fill, group,
linetype, shape, size
Visualizing error
df <- data.frame(grp = c(“A”, “B”), fit = 4:5, se = 1:2)
j <- ggplot(df, aes(grp, fit, ymin = fit-se, ymax = fit+se))
data <- data.frame(murder = USArrests\$Murder,
state = tolower(rownames(USArrests)))
map <- map_data(“state”)
k <- ggplot(data, aes(fill = murder))
k + geom_map(aes(map_id = state), map = map) +
expand_limits(x = map\$long, y = map\$lat)
map_id, alpha, color, fill, linetype, size
Maps
h + geom_bin2d(binwidth = c(0.25, 500))
x, y, alpha, color, fill, linetype, size, weight
h + geom_density2d()
x, y, alpha, colour, group, linetype, size
h + geom_hex()
x, y, alpha, colour, fill, size
Data Visualization
with ggplot2
Cheat Sheet
RStudio® is a trademark of RStudio, Inc. • CC BY RStudio • info@rstudio.com • 844-448-1212 • rstudio.com Learn more at docs.ggplot2.org and www.ggplot2-exts.org • ggplot2 2.1.0 • Updated: 11/16
ggplot(data = mpg, aes(x = cty, y = hwy))
Begins a plot that you finish by adding layers to.
Add one geom function per layer.
Basics
Complete the template below to build a graph.
ggplot2 is based on the grammar of graphics, the
idea that you can build every graph from the same
components: a data set, a coordinate system, and
geoms—visual marks that represent data points.
To display values, map variables in the data to visual
properties of the geom (aesthetics) like size, color,
and x and y locations.
Graphical Primitives
Data Visualization
with ggplot2
Cheat Sheet
RStudio® is a trademark of RStudio, Inc. • CC BY RStudio • info@rstudio.com • 844-448-1212 • rstudio.com Learn more at docs.ggplot2.org • ggplot2 0.9.3.1 • Updated: 3/15
Geoms – Use a geom to represent data points, use the geom’s aesthetic properties to represent variables
Basics
One Variable
a + geom_area(stat = “bin”)
x, y, alpha, color, fill, linetype, size
b + geom_area(aes(y = ..density..), stat = “bin”)
a + geom_density(kernal = “gaussian”)
x, y, alpha, color, fill, linetype, size, weight
b + geom_density(aes(y = ..county..))
a+ geom_dotplot()
x, y, alpha, color, fill
a + geom_freqpoly()
x, y, alpha, color, linetype, size
b + geom_freqpoly(aes(y = ..density..))
a + geom_histogram(binwidth = 5)
x, y, alpha, color, fill, linetype, size, weight
b + geom_histogram(aes(y = ..density..))
Discrete
a <- ggplot(mpg, aes(fl))
b + geom_bar()
x, alpha, color, fill, linetype, size, weight
Continuous
a <- ggplot(mpg, aes(hwy))
Two Variables
Discrete X, Discrete Y
h <- ggplot(diamonds, aes(cut, color))
h + geom_jitter()
x, y, alpha, color, fill, shape, size
Discrete X, Continuous Y
g <- ggplot(mpg, aes(class, hwy))
g + geom_bar(stat = “identity”)
x, y, alpha, color, fill, linetype, size, weight
g + geom_boxplot()
lower, middle, upper, x, ymax, ymin, alpha,
color, fill, linetype, shape, size, weight
g + geom_dotplot(binaxis = “y”,
stackdir = “center”)
x, y, alpha, color, fill
g + geom_violin(scale = “area”)
x, y, alpha, color, fill, linetype, size, weight
Continuous X, Continuous Y
f <- ggplot(mpg, aes(cty, hwy))
f + geom_blank()
f + geom_jitter()
x, y, alpha, color, fill, shape, size
f + geom_point()
x, y, alpha, color, fill, shape, size
f + geom_quantile()
x, y, alpha, color, linetype, size, weight
f + geom_rug(sides = “bl”)
alpha, color, linetype, size
f + geom_smooth(model = lm)
x, y, alpha, color, fill, linetype, size, weight
f + geom_text(aes(label = cty))
x, y, label, alpha, angle, color, family, fontface,
hjust, lineheight, size, vjust
Three Variables
i + geom_contour(aes(z = z))
x, y, z, alpha, colour, linetype, size, weight
seals\$z <- with(seals, sqrt(delta_long^2 + delta_lat^2))
i <- ggplot(seals, aes(long, lat))
g <- ggplot(economics, aes(date, unemploy))
Continuous Function
g + geom_area()
x, y, alpha, color, fill, linetype, size
g + geom_line()
x, y, alpha, color, linetype, size
g + geom_step(direction = “hv”)
x, y, alpha, color, linetype, size
Continuous Bivariate Distribution
h <- ggplot(movies, aes(year, rating))
h + geom_bin2d(binwidth = c(5, 0.5))
xmax, xmin, ymax, ymin, alpha, color, fill,
linetype, size, weight
h + geom_density2d()
x, y, alpha, colour, linetype, size
h + geom_hex()
x, y, alpha, colour, fill size
d + geom_segment(aes(
xend = long + delta_long,
yend = lat + delta_lat))
x, xend, y, yend, alpha, color, linetype, size
d + geom_rect(aes(xmin = long, ymin = lat,
xmax= long + delta_long,
ymax = lat + delta_lat))
xmax, xmin, ymax, ymin, alpha, color, fill,
linetype, size
c + geom_polygon(aes(group = group))
x, y, alpha, color, fill, linetype, size
d<- ggplot(seals, aes(x = long, y = lat))
i + geom_raster(aes(fill = z), hjust=0.5,
vjust=0.5, interpolate=FALSE)
x, y, alpha, fill
i + geom_tile(aes(fill = z))
x, y, alpha, color, fill, linetype, size
e + geom_crossbar(fatten = 2)
x, y, ymax, ymin, alpha, color, fill, linetype,
size
e + geom_errorbar()
x, ymax, ymin, alpha, color, linetype, size,
width (also geom_errorbarh())
e + geom_linerange()
x, ymin, ymax, alpha, color, linetype, size
e + geom_pointrange()
x, y, ymin, ymax, alpha, color, fill, linetype,
shape, size
Visualizing error
df <- data.frame(grp = c(“A”, “B”), fit = 4:5, se = 1:2)
e <- ggplot(df, aes(grp, fit, ymin = fit-se, ymax = fit+se))
g + geom_path(lineend=”butt”,
linejoin=”round’, linemitre=1)
x, y, alpha, color, linetype, size
g + geom_ribbon(aes(ymin=unemploy – 900,
ymax=unemploy + 900))
x, ymax, ymin, alpha, color, fill, linetype, size
g <- ggplot(economics, aes(date, unemploy))
c <- ggplot(map, aes(long, lat))
data <- data.frame(murder = USArrests\$Murder,
state = tolower(rownames(USArrests)))
map <- map_data(“state”)
e <- ggplot(data, aes(fill = murder))
e + geom_map(aes(map_id = state), map = map) +
expand_limits(x = map\$long, y = map\$lat)
map_id, alpha, color, fill, linetype, size
Maps
F M A
= 1
2
3
0
0 1 2 3 4
4
1
2
3
0
0 1 2 3 4
4
+
data geom coordinate
system
plot
+
F M A
= 1
2
3
0
0 1 2 3 4
4
1
2
3
0
0 1 2 3 4
4
data geom coordinate
system
plot
x = F
y = A
color = F
size = A
1
2
3
0
0 1 2 3 4
4
plot
+
F M A
=1
2
3
0
0 1 2 3 4
4
data geom coordinate
systemx = F
y = A
x = F
y = A
Graphical Primitives
Data Visualization
with ggplot2
Cheat Sheet
RStudio® is a trademark of RStudio, Inc. • CC BY RStudio • info@rstudio.com • 844-448-1212 • rstudio.com Learn more at docs.ggplot2.org • ggplot2 0.9.3.1 • Updated: 3/15
Geoms – Use a geom to represent data points, use the geom’s aesthetic properties to represent variables
Basics
One Variable
a + geom_area(stat = “bin”)
x, y, alpha, color, fill, linetype, size
b + geom_area(aes(y = ..density..), stat = “bin”)
a + geom_density(kernal = “gaussian”)
x, y, alpha, color, fill, linetype, size, weight
b + geom_density(aes(y = ..county..))
a+ geom_dotplot()
x, y, alpha, color, fill
a + geom_freqpoly()
x, y, alpha, color, linetype, size
b + geom_freqpoly(aes(y = ..density..))
a + geom_histogram(binwidth = 5)
x, y, alpha, color, fill, linetype, size, weight
b + geom_histogram(aes(y = ..density..))
Discrete
a <- ggplot(mpg, aes(fl))
b + geom_bar()
x, alpha, color, fill, linetype, size, weight
Continuous
a <- ggplot(mpg, aes(hwy))
Two Variables
Discrete X, Discrete Y
h <- ggplot(diamonds, aes(cut, color))
h + geom_jitter()
x, y, alpha, color, fill, shape, size
Discrete X, Continuous Y
g <- ggplot(mpg, aes(class, hwy))
g + geom_bar(stat = “identity”)
x, y, alpha, color, fill, linetype, size, weight
g + geom_boxplot()
lower, middle, upper, x, ymax, ymin, alpha,
color, fill, linetype, shape, size, weight
g + geom_dotplot(binaxis = “y”,
stackdir = “center”)
x, y, alpha, color, fill
g + geom_violin(scale = “area”)
x, y, alpha, color, fill, linetype, size, weight
Continuous X, Continuous Y
f <- ggplot(mpg, aes(cty, hwy))
f + geom_blank()
f + geom_jitter()
x, y, alpha, color, fill, shape, size
f + geom_point()
x, y, alpha, color, fill, shape, size
f + geom_quantile()
x, y, alpha, color, linetype, size, weight
f + geom_rug(sides = “bl”)
alpha, color, linetype, size
f + geom_smooth(model = lm)
x, y, alpha, color, fill, linetype, size, weight
f + geom_text(aes(label = cty))
x, y, label, alpha, angle, color, family, fontface,
hjust, lineheight, size, vjust
Three Variables
i + geom_contour(aes(z = z))
x, y, z, alpha, colour, linetype, size, weight
seals\$z <- with(seals, sqrt(delta_long^2 + delta_lat^2))
i <- ggplot(seals, aes(long, lat))
g <- ggplot(economics, aes(date, unemploy))
Continuous Function
g + geom_area()
x, y, alpha, color, fill, linetype, size
g + geom_line()
x, y, alpha, color, linetype, size
g + geom_step(direction = “hv”)
x, y, alpha, color, linetype, size
Continuous Bivariate Distribution
h <- ggplot(movies, aes(year, rating))
h + geom_bin2d(binwidth = c(5, 0.5))
xmax, xmin, ymax, ymin, alpha, color, fill,
linetype, size, weight
h + geom_density2d()
x, y, alpha, colour, linetype, size
h + geom_hex()
x, y, alpha, colour, fill size
d + geom_segment(aes(
xend = long + delta_long,
yend = lat + delta_lat))
x, xend, y, yend, alpha, color, linetype, size
d + geom_rect(aes(xmin = long, ymin = lat,
xmax= long + delta_long,
ymax = lat + delta_lat))
xmax, xmin, ymax, ymin, alpha, color, fill,
linetype, size
c + geom_polygon(aes(group = group))
x, y, alpha, color, fill, linetype, size
d<- ggplot(seals, aes(x = long, y = lat))
i + geom_raster(aes(fill = z), hjust=0.5,
vjust=0.5, interpolate=FALSE)
x, y, alpha, fill
i + geom_tile(aes(fill = z))
x, y, alpha, color, fill, linetype, size
e + geom_crossbar(fatten = 2)
x, y, ymax, ymin, alpha, color, fill, linetype,
size
e + geom_errorbar()
x, ymax, ymin, alpha, color, linetype, size,
width (also geom_errorbarh())
e + geom_linerange()
x, ymin, ymax, alpha, color, linetype, size
e + geom_pointrange()
x, y, ymin, ymax, alpha, color, fill, linetype,
shape, size
Visualizing error
df <- data.frame(grp = c(“A”, “B”), fit = 4:5, se = 1:2)
e <- ggplot(df, aes(grp, fit, ymin = fit-se, ymax = fit+se))
g + geom_path(lineend=”butt”,
linejoin=”round’, linemitre=1)
x, y, alpha, color, linetype, size
g + geom_ribbon(aes(ymin=unemploy – 900,
ymax=unemploy + 900))
x, ymax, ymin, alpha, color, fill, linetype, size
g <- ggplot(economics, aes(date, unemploy))
c <- ggplot(map, aes(long, lat))
data <- data.frame(murder = USArrests\$Murder,
state = tolower(rownames(USArrests)))
map <- map_data(“state”)
e <- ggplot(data, aes(fill = murder))
e + geom_map(aes(map_id = state), map = map) +
expand_limits(x = map\$long, y = map\$lat)
map_id, alpha, color, fill, linetype, size
Maps
F M A
= 1
2
3
0
0 1 2 3 4
4
1
2
3
0
0 1 2 3 4
4
+
data geom coordinate
system
plot
+
F M A
= 1
2
3
0
0 1 2 3 4
4
1
2
3
0
0 1 2 3 4
4
data geom coordinate
system
plot
x = F
y = A
color = F
size = A
1
2
3
0
0 1 2 3 4
4
plot
+
F M A
=1
2
3
0
0 1 2 3 4
4
data geom coordinate
systemx = F
y = A
x = F
y = A
ggsave(“plot.png”, width = 5, height = 5)
Saves last plot as 5’ x 5’ file named “plot.png” in
working directory. Matches file type to file extension.
qplot(x = cty, y = hwy, data = mpg, geom = “point”)
Creates a complete plot with given data, geom, and
mappings. Supplies many useful defaults.
aesthetic mappings data geom
last_plot()
Returns the last plot
ggplot(data = <DATA >) +
<GEOM_FUNCTION> (
mapping = aes(<MAPPINGS> ),
stat = <STAT> ,
position = <POSITION>
) +
<COORDINATE_FUNCTION> +
<FACET_FUNCTION> +
<SCALE_FUNCTION> +
<THEME_FUNCTION><THEME_FUNCTION>
<SCALE_FUNCTION>
<FACET_FUNCTION>
<COORDINATE_FUNCTION>
<POSITION>
<STAT>
<MAPPINGS>
<GEOM_FUNCTION>
<DATA> Required
Not
required,
sensible
defaults
supplied
Graphical Primitives
a <- ggplot(economics, aes(date, unemploy))
b <- ggplot(seals, aes(x = long, y = lat))
a + geom_blank()
(Useful for expanding limits)
b + geom_curve(aes(yend = lat + 1,
xend=long+1,curvature=z)) – x, xend, y, yend,
alpha, angle, color, curvature, linetype, size
a + geom_path(lineend=”butt”,
linejoin=”round’, linemitre=1)
x, y, alpha, color, group, linetype, size
a + geom_polygon(aes(group = group))
x, y, alpha, color, fill, group, linetype, size
b + geom_rect(aes(xmin = long, ymin=lat,
xmax= long + 1, ymax = lat + 1)) – xmax, xmin,
ymax, ymin, alpha, color, fill, linetype, size
a + geom_ribbon(aes(ymin=unemploy – 900,
ymax=unemploy + 900)) – x, ymax, ymin
alpha, color, fill, group, linetype, size
Line Segments
common aesthetics: x, y, alpha, color, linetype, size
b + geom_abline(aes(intercept=0, slope=1))
b + geom_hline(aes(yintercept = lat))
b + geom_vline(aes(xintercept = long))
b + geom_segment(aes(yend=lat+1, xend=long+1))
b + geom_spoke(aes(angle = 1:1155, radius = 1))
One Variable
c + geom_area(stat = “bin”)
x, y, alpha, color, fill, linetype, size
c + geom_density(kernel = “gaussian”)
x, y, alpha, color, fill, group, linetype, size, weight
c + geom_dotplot()
x, y, alpha, color, fill
c + geom_freqpoly()
x, y, alpha, color, group, linetype, size
c + geom_histogram(binwidth = 5)
x, y, alpha, color, fill, linetype, size, weight
c2 + geom_qq(aes(sample = hwy))
x, y, alpha, color, fill, linetype, size, weight
Discrete
d <- ggplot(mpg, aes(fl))
d + geom_bar()
x, alpha, color, fill, linetype, size, weight
Continuous
c <- ggplot(mpg, aes(hwy)); c2 <- ggplot(mpg)

RStudio® is a trademark of RStudio, Inc. • CC BY RStudio • info@rstudio.com • 844-448-1212 • rstudio.com
Coordinate Systems
60
long
lat
π + coord_quickmap()
π + coord_map(projection = “ortho”,
orientation=c(41, -74, 0))
projection, orientation, xlim, ylim
Map projections from the mapproj package
(mercator (default), azequalarea, lagrange, etc.)
r + coord_cartesian(xlim = c(0, 5))
xlim, ylim
The default cartesian coordinate system
r + coord_fixed(ratio = 1/2)
ratio, xlim, ylim
Cartesian coordinates with fixed aspect
ratio between x and y units
r + coord_flip()
xlim, ylim
Flipped Cartesian coordinates
r + coord_polar(theta = “x”, direction=1 )
theta, start, direction
Polar coordinates
r + coord_trans(ytrans = “sqrt”)
xtrans, ytrans, limx, limy
Transformed cartesian coordinates. Set
xtrans and ytrans to the name
of a window function.
r <- d + geom_bar()
s + geom_bar(position = “dodge”)
Arrange elements side by side
s + geom_bar(position = “fill”)
Stack elements on top of one another,
normalize height
e + geom_point(position = “jitter”)
Add random noise to X and Y position of each
element to avoid overplotting
e + geom_label(position = “nudge”)
Nudge labels away from points
s + geom_bar(position = “stack”)
Stack elements on top of one another
s <- ggplot(mpg, aes(fl, fill = drv))
Position adjustments determine how to arrange
geoms that would otherwise occupy the same space.
Each position adjustment can be recast as a function
with manual width and height arguments
s + geom_bar(position = position_dodge(width = 1))
A
B
Themes
r + theme_classic()
r + theme_light()
r + theme_linedraw()
r + theme_minimal()
Minimal themes
r + theme_void()
Empty theme
0
50
100
150
c d e p r
fl
count
0
50
100
150
c d e p r
fl
count
0
50
100
150
c d e p r
fl
count
0
50
100
150
c d e p r
fl
count
r + theme_bw()
White background
with grid lines
r + theme_gray()
Grey background
(default theme)
r + theme_dark()
dark for contrast0
50
100
150
c d e p r
fl
count
Zooming
t + coord_cartesian(
xlim = c(0, 100), ylim = c(10, 20))
With clipping (removes unseen data points)
t + xlim(0, 100) + ylim(10, 20)
t + scale_x_continuous(limits = c(0, 100)) +
scale_y_continuous(limits = c(0, 100))
Without clipping (preferred)
Legends
n + theme(legend.position = “bottom”)
Place legend at “bottom”, “top”, “left”, or “right”
n + guides(fill = “none”)
Set legend type for each aesthetic: colorbar, legend,
or none (no legend)
n + scale_fill_discrete(name = “Title”,
labels = c(“A”, “B”, “C”, “D”, “E”))
Set legend title and labels with a scale function.
Faceting
t <- ggplot(mpg, aes(cty, hwy)) + geom_point()
Facets divide a plot into subplots based on the values
of one or more discrete variables.
t + facet_grid(. ~ fl)
facet into columns based on fl
t + facet_grid(year ~ .)
facet into rows based on year
t + facet_grid(year ~ fl)
facet into both rows and columns
t + facet_wrap(~ fl)
wrap facets into a rectangular layout
Set scales to let axis limits vary across facets
t + facet_grid(drv ~ fl, scales = “free”)
x and y axis limits adjust to individual facets
• “free_x” – x axis limits adjust
• “free_y” – y axis limits adjust
Set labeller to adjust facet labels
t + facet_grid(. ~ fl, labeller = label_both)
t + facet_grid(fl ~ ., labeller = label_bquote(alpha ^ .(fl)))
t + facet_grid(. ~ fl, labeller = label_parsed)
ﬂ: c ﬂ: d ﬂ: e ﬂ: p ﬂ: r
c d e p r
↵c
↵d ↵e
↵p
↵r
Learn more at docs.ggplot2.org and www.ggplot2-exts.org • ggplot2 2.1.0 • Updated: 11/16
c + stat_bin(binwidth = 1, origin = 10)
x, y | ..count.., ..ncount.., ..density.., ..ndensity..
c + stat_count(width = 1) x, y, | ..count.., ..prop..
c + stat_density(adjust = 1, kernel = “gaussian”)
x, y, | ..count.., ..density.., ..scaled..
e + stat_bin_2d(bins = 30, drop = T)
x, y, fill | ..count.., ..density..
e + stat_bin_hex(bins=30) x, y, fill | ..count.., ..density..
e + stat_density_2d(contour = TRUE, n = 100)
x, y, color, size | ..level..
e + stat_ellipse(level = 0.95, segments = 51, type = “t”)
l + stat_contour(aes(z = z)) x, y, z, order | ..level..
l + stat_summary_hex(aes(z = z), bins = 30, fun = max)
x, y, z, fill | ..value..
l + stat_summary_2d(aes(z = z), bins = 30, fun = mean)
x, y, z, fill | ..value..
f + stat_boxplot(coef = 1.5)
x, y | ..lower.., ..middle.., ..upper.., ..width.. , ..ymin.., ..ymax..
f + stat_ydensity(kernel = “gaussian”, scale = “area”)
x, y | ..density.., ..scaled.., ..count.., ..n.., ..violinwidth.., ..width..
e + stat_ecdf(n = 40) x, y | ..x.., ..y..
e + stat_quantile(quantiles = c(0.1, 0.9),
formula = y ~ log(x), method = “rq”) x, y | ..quantile..
e + stat_smooth(method = “lm”, formula = y ~ x,
se=T, level=0.95) x, y | ..se.., ..x.., ..y.., ..ymin.., ..ymax..
ggplot() + stat_function(aes(x = -3:3), n = 99,
fun = dnorm, args = list(sd=0.5)) x | ..x.., ..y..
e + stat_identity(na.rm = TRUE)
ggplot() + stat_qq(aes(sample=1:100), dist = qt,
dparam=list(df=5)) sample, x, y | ..sample.., ..theoretical..
e + stat_sum() x, y, size | ..n.., ..prop..
e + stat_summary(fun.data = “mean_cl_boot”)
h + stat_summary_bin(fun.y = “mean”, geom = “bar”)
e + stat_unique()
Stats – An alternative way to build a layer
+
x ..count..
= 1
2
3
0
0 1 2 3 4
4
1
2
3
0
0 1 2 3 4
4
data geom coordinate
system
plot
x = x
y = ..count..
fl cty cyl
stat
A stat builds new variables to plot (e.g., count, prop).
Visualize a stat by changing the default stat of a geom
function, geom_bar(stat=”count”) or by using a stat
function, stat_count(geom=”bar”), which calls a default
geom to make a layer (equivalent to a geom function).
Use ..name.. syntax to map stat variables to aesthetics.
i + stat_density2d(aes(fill = ..level..),
geom = “polygon”)
stat function geom mappings
variable created by stat
geom to use
1D distributions
2D distributions
3 Variables
Comparisons
Functions
General Purpose
Labels
t + labs( x = “New x axis label”, y = “New y axis label”,
title =”Add a title above the plot”,
subtitle = “Add a subtitle below title”,
caption = “Add a caption below plot”,
<aes> = “New <aes> legend title”)
Use scale
functions
to update
legend labels
<AES> <AES>
t + annotate(geom = “text”, x = 8, y = 9, label = “A”)
geom to place manual values for geom’s aesthetics
o + scale_fill_distiller(palette = “Blues”)
mid = “white”, midpoint = 25)
Also: rainbow(), heat.colors(), terrain.colors(),
cm.colors(), RColorBrewer::brewer.pal()
Scales
Scales map data values to the visual values of an
aesthetic. To change a mapping, add a new scale.
(n <- d + geom_bar(aes(fill = fl)))
n + scale_fill_manual(
values = c(“skyblue”, “royalblue”, “blue”, “navy”),
limits = c(“d”, “e”, “p”, “r”), breaks =c(“d”, “e”, “p”, “r”),
name = “fuel”, labels = c(“D”, “E”, “P”, “R”))
scale_
aesthetic
prepackaged
scale to use
scale specific
arguments
range of values to
include in mapping
title to use in
legend/axis
labels to use in
legend/axis
breaks to use in
legend/axis
General Purpose scales
Use with most aesthetics
scale_*_continuous() – map cont’ values to visual ones
scale_*_discrete() – map discrete values to visual ones
scale_*_identity() – use data values as visual ones
scale_*_manual(values = c()) – map discrete values to
manually chosen visual ones
scale_*_date(date_labels = “%m/%d”),
date_breaks = “2 weeks”) – treat data values as dates.
scale_*_datetime() – treat data x values as date times.
Use same arguments as scale_x_date().
See ?strptime for label formats.
X and Y location scales
Color and ﬁll scales (Discrete)
Shape and size scales
Use with x or y aesthetics (x shown here)
scale_x_log10() – Plot x on log10 scale
scale_x_reverse() – Reverse direction of x axis
scale_x_sqrt() – Plot x on square root scale
n <- d + geom_bar(aes(fill = fl))
n + scale_fill_brewer(palette = “Blues”)
For palette choices: RColorBrewer::display.brewer.all()
n + scale_fill_grey(start = 0.2, end = 0.8, na.value
= “red”)
p + scale_shape() + scale_size()
p + scale_shape_manual(values = c(3:7))
Color and ﬁll scales (Continuous)
o <- c + geom_dotplot(aes(fill = ..x..))
p <- e + geom_point(aes(shape = fl, size = cyl))