Analyzing Spatiotemporal Development of Organic Farming in Poland

Abstract

:

1. Introduction

2. Materials and Methods

2.1. Materials

2.2. Methods

2.2.1. Dynamic Synthetic Measure

  • Presenting the diagnostic variable of organic farming (Table 1) Xj (j = 1, 2, …, m) for each commune Oi (i = 1, 2, …, n) in each studied period in the form of a two-dimensional matrix (1):
  • Conducting preliminary correlation and variability analysis to exclude variables due to their strong association with each other and low degree of variability. Pearson’s linear correlation coefficient was adopted to measure the strength and direction of the correlation between the observed variables (the Student’s t-test for significance of correlation was also applied) [36]. Variability was expressed by the coefficient of variation (CV), which is generally claimed to be more than 10% [37].
  • Normalizing the variables to maintain comparability of statistical data. The stimulants are normalized with the Formula (2):
  • Calculating the dynamic synthetic measure (DSMit) as an arithmetical mean of normalized (2) and (3) variable values (4):
5.
Map visualization, which plays a key role in interpreting the results of variability and understanding the state and development of organic farming from a spatiotemporal perspective.

2.2.2. Spatial Autocorrelation

3. Results

3.1. Preliminary Data Analysis

3.2. Synthetic Measure of Organic Farming

3.3. Spatial Autocorrelation in Ecofarming

4. Discussion

5. Conclusions

Funding

Informed Consent Statement

Data Availability Statement

Conflicts of Interest

Appendix A

Order of Contiguity

(Including Lower Order/s)

LISA

Clusters/Outliers

DSM2020 DSM2019 DSM2018 DSM2017 DSM2016 DSM2015 DSM2014
1st Moran’s I 0.28 *** 0.23 *** 0.22 *** 0.25 *** 0.27 *** 0.20 *** 0.18 ***
HH 155 147 134 148 155 119 136
LL 348 361 296 352 383 311 306
LH 55 59 61 49 49 73 67
HL 22 38 39 30 36 22 29
Not sig. 1987 1872 1947 1898 1854 1952 1939
2nd Moran’s I 0.21 *** 0.17 *** 0.17 *** 0.20 *** 0.20 *** 0.14 *** 0.12 ***
(0.23 ***) (0.19 ***) (0.19 ***) (0.22 ***) (0.22 ***) (0.16 ***) (0.14 ***)
HH 184 175 175 185 180 129 150
(219) (214) (215) (213) (221) (165) (180)
LL 515 536 468 556 601 525 429
(623) (656) (610) (665) (698) (631) (523)
LH 95 90 111 96 105 109 111
(105) (97) (109) (95) (107) (126) (121)
HL 44 45 31 46 49 48 55
(55) (65) (51) (57) (47) (60) (60)
Not sig. 1639 1631 1692 1594 1542 1666 1732
(1475) (1445) (1492) (1447) (1404) (1495) (1593)
3rd Moran’s I 0.14 *** 0.11 *** 0.10 *** 0.12 *** 0.13 *** 0.10 *** 0.09 ***
(0.18 ***) (0.15 ***) (0.14 ***) (0.17 ***) (0.17 ***) (0.13 ***) (0.11 ***)
HH 190 183 173 199 193 150 149
(252) (243) (251) (264) (265) (229) (233)
LL 557 591 521 539 628 612 478
(736) (740) (697) (777) (824) (790) (636)
LH 127 134 141 123 125 129 126
(138) (144) (168) (143) (149) (183) (171)
HL 75 74 62 76 69 74 75
(79) (83) (69) (89) (83) (87) (82)
Not sig. 1528 1495 1580 1486 1462 1512 1649
(1272) (1267) (1292) (1204) (1156) (1188) (1355)
4th Moran’s I 0.09 *** 0.07 *** 0.06 *** 0.08 *** 0.08 *** 0.07 *** 0.06 ***
(0.15 ***) (0.12 ***) (0.11 ***) (0.13 ***) (0.14 ***) (0.11 ***) (0.09 ***)
HH 181 177 141 171 173 154 146
(260) (263) (264) (313) (306) (270) (261)
LL 568 594 526 613 642 613 515
(824) (812) (756) (874) (910) (845) (694)
LH 145 153 169 148 154 166 141
(168) (185) (220) (184) (202) (244) (231)
HL 72 77 65 75 83 72 82
(93) (113) (89) (107) (107) (96) (112)
Not sig. 1511 1476 1576 1470 1425 1472 1593
(1132) (1104) (1148) (999) (952) (1022) (1179)
5th Moran’s I 0.07 *** 0.06 *** 0.05 *** 0.06 *** 0.06 *** 0.05 *** 0.05 ***
(0.12 ***) (0.10 ***) (0.09 ***) (0.11 ***) (0.11 ***) (0.09 ***) (0.08 ***)
6th Moran’s I 0.06 *** 0.05 *** 0.04 *** 0.05 *** 0.06 *** 0.05 *** 0.04 ***
(0.11 ***) (0.08 ***) (0.07 ***) (0.09 ***) (0.10 ***) (0.08 ***) (0.07 ***)
7th Moran’s I 0.05 *** 0.04 *** 0.03 *** 0.05 *** 0.05 *** 0.03 *** 0.04 ***
(0.09 ***) (0.07 ***) (0.06 ***) (0.08 ***) (0.09 ***) (0.07 ***) (0.06 ***)
8th Moran’s I 0.03 *** 0.02 ** 0.02 ** 0.03 *** 0.03 *** 0.02 ** 0.02 **
(0.08 ***) (0.06 ***) (0.05 ***) (0.07 ***) (0.07 ***) (0.06 ***) (0.05 ***)
9th Moran’s I 0.03 *** 0.02 ** 0.01 ** 0.02 ** 0.03 *** 0.02 ** 0.02 **
(0.07 ***) (0.05 ***) (0.05 ***) (0.06 ***) (0.07 ***) (0.05 ***) (0.05 ***)
10th Moran’s I 0.03 *** 0.02 ** 0.01 ** 0.02 ** 0.02 ** 0.01 ** 0.02 **
(0.06 ***) (0.05 ***) (0.04 ***) (0.05 ***) (0.06 ***) (0.04 ***) (0.04 ***)
11th Moran’s I 0.03 *** 0.01 ** 0.01 ** 0.02 ** 0.02 ** 0.01 ** 0.02 **
(0.06 ***) (0.04 ***) (0.04 ***) (0.05 ***) (0.05 ***) (0.04 ***) (0.04 ***)
12th Moran’s I 0.02 ** 0.01 ** 0.008 * 0.01 ** 0.005 * 0.006 * 0.01 **
(0.05 ***) (0.04 ***) (0.03 **) (0.04 ***) (0.05 ***) (0.03 **) (0.03 **)
13th Moran’s I 0.01 ** 0.005 ** −0.002 0.003 −0.004 −0.008 * 0.006
(0.05 ***) (0.03 **) (0.03 **) (0.04 ***) (0.04 ***) (0.03 **) (0.03 **)
14th Moran’s I 0.006 * −0.001 −0.003 −0.001 −0.007 * −0.007 * −0.003
(0.04 ***) (0.03 **) (0.02 *) (0.03 **) (0.03 **) (0.02 *) (0.03 **)
15th Moran’s I 0.007 ** 0.007 ** −0.001 0.001 −0.007 * −0.007 * −0.004 *
(0.04 ***) (0.03 **) (0.02 *) (0.03 **) (0.03 **) (0.02 *) (0.02 *)
16th Moran’s I 0.005 * 0.004 0.002 −0.003 −0.003 −0.005 * 0.001
(0.03 **) (0.02 *) (0.01 *) (0.02 *) (0.03 **) (0.02 *) (0.02 *)
17th Moran’s I −0.001 −0.002 −0.001 −0.01 ** −0.01 ** −0.01 ** −0.002
(0.03 **) (0.02 *) (0.01 *) (0.02 *) (0.02 *) (0.01 *) (0.02 *)
HH 53 38 56 38 37 17 38
(284) (279) (269) (271) (251) (159) (262)
LL 514 470 424 476 518 506 393
(1071) (982) (922) (1015) (1003) (968) (927)
LH 132 102 120 103 104 91 96
(453) (415) (465) (343) (306) (321) (328)
HL 145 152 160 203 238 185 160
(210) (211) (197) (204) (207) (165) (205)
Not sig. 1633 1715 1717 1657 1580 1678 1790
(459) (590) (624) (644) (710) (864) (755)
30th Moran’s I −0.05 *** −0.05 *** −0.02 ** −0.04 *** −0.04 *** −0.02 ** −0.02 **
(0.08 *) (0.003 *) (0.002 *) (0.001 *) (−0.001) (−0.001) (0.003 *)
HH 67 74 76 74 75 83 91
(216) (120) (93) (59) (21) (18) (146)
LL 2500 221 208 193 182 163 199
(904) (975) (922) (1034) (1135) (1131) (1052)
LH 427 403 369 428 414 362 376
(418) (259) (177) (207) (169) (181) (319)
HL 206 179 132 166 139 114 138
(218) (266) (304) (342) (405) (380) (312)
Not sig. 1435 1508 1600 1524 1575 1663 1581
(721) (857) (1041) (835) (747) (767) (648)
Neighborless 92 92 92 92 92 92 92

References

  1. Council Regulation (EC) No 834/2007 of 28 June 2007 on organic production and labelling of organic products and repealing Regulation (EEC) No 2092/91. Off. J. Eur. Union L 2007, 189, 1–23.
  2. Cristache, S.E.; Vuță, M.; Marin, E.; Cioacă, S.-I.; Vuţă, M. Organic versus Conventional Farming—A Paradigm for the Sustainable Development of the European Countries. Sustainability 2018, 10, 4279. [Google Scholar] [CrossRef][Green Version]
  3. Smoluk-Sikorska, J.; Malinowski, M.; Łuczka, W. Identification of the Conditions for Organic Agriculture Development in Polish Districts—An Implementation of Canonical Analysis. Agriculture 2020, 10, 514. [Google Scholar] [CrossRef]
  4. Bonfiglio, A.; Arzeni, A. Spatial distribution of organic farms and territorial context: An application to an Italian rural region. Bio-Based Appl. Econ. J. 2019, 8, 297–323. [Google Scholar]
  5. Moudrý, J. Environmental Aspects of Organic Farming, Organic Agriculture towards Sustainability, Vytautas Pilipavicius, Intech Open, (7 May 2014). Available online: https://www.intechopen.com/books/organic-agriculture-towards-sustainability/environmental-aspects-of-organic-farming (accessed on 10 July 2021).
  6. Łuczka, W.; Kalinowski, S. Barriers to the Development of Organic Farming: A Polish Case Study. Agriculture 2020, 10, 536. [Google Scholar] [CrossRef]
  7. Fatemi, M.; Rezaei-Moghaddam, K. Sociological factors influencing the performance of organic activities in Iran. Life Sci. Soc. Policy 2020, 16, 3. [Google Scholar] [CrossRef]
  8. Malek, Ž.; Tieskens, K.F.; Verburg, P.H. Explaining the global spatial distribution of organic crop producers. Agric. Syst. 2019, 176, 102680. [Google Scholar] [CrossRef]
  9. Allaire, G.; Poméon, T.; Maigné, E.; Cahuzac, E.; Simioni, M.; Desjeux, Y. Territorial analysis of the diffusion of organic farming in France: Between heterogeneity and spatial dependence. Ecol. Indic. 2015, 59, 70–81. [Google Scholar] [CrossRef]
  10. Mickiewicz, B.; Lisiak, S. Polish Organic Farming on the Background of the European Union in Light of New Regulations. J. Agribus. Rural Dev. 2017, 43, 125–132. [Google Scholar] [CrossRef]
  11. Łuczka, W. Development of Organic Food Production and Processing Following the Accession to the European Union. Intercathedra 2017, 33, 61–67. [Google Scholar]
  12. Eurostat. Organic Farming Statistics. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Organic_farming_statistics (accessed on 10 July 2021).
  13. European Commission. Organic Farming in the EUA Fast Growing Sector. Available online: https://ec.europa.eu/info/sites/default/files/food-farming-fisheries/farming/documents/market-brief-organic-farming-in-the-eu_mar2019_en.pdf (accessed on 10 July 2021).
  14. Grzybowska-Brzezińska, M.; Grzywińska-Rąpca, M.; Kuberska, D. The Concentration and Potential of Organic Farming and Processing on the Organic Food Market in Poland. Stud. Oecon. Posnan. 2018, 6, 86–99. [Google Scholar] [CrossRef]
  15. Komorowska, D. Importance of Organic Farming in Poland. Rocz. Nauk. Stow. Ekon. Rol. Agrobiz. 2015, 17, 119–126. (In Polish) [Google Scholar]
  16. Forsal.pl. Available online: https://forsal.pl/biznes/rolnictwo/artykuly/8153959,koncentracja-w-polskim-rolnictwie-przebiega-zbyt-wolno.html (accessed on 10 July 2021).
  17. Kociszewski, K. Perspectives of organic agriculture development in the light empirical study surveyed among conventional farms. J. Agribus. Rural Dev. 2014, 1, 59–68. (In Polish) [Google Scholar]
  18. Pawlewicz, A.; Pawlewicz, K. Spatial differentiation of organic agricultural production in Poland. Zesz. Nauk. SGGW Warsz. Ser. Probl. Rol. Świat. 2008, 5, 109–115. (In Polish) [Google Scholar]
  19. Podawca, K.; Dąbkowski, N. Spatial Diversification of Situation of the Organic Farming in the Polish Voivodeships in the Years 2010–2018. J. Ecol. Eng. 2020, 21, 191–200. [Google Scholar] [CrossRef]
  20. Kacprzak, E.; Kołodziejczak, A. Development of organic farming in Poland over the years 2006–2009. Biul. IGSEiGP UAM Ser. Rozw. Reg. Polityka Reg. 2011, 14, 117–135. (In Polish) [Google Scholar]
  21. Dąbkowski, N.; Podawca, K. Development of ecological farms in the Płock and Gostynin counties. Notatki Płock. Kwart. Tow. Nauk. Płock. 2017, 4, 18–24. (In Polish) [Google Scholar]
  22. Szeląg-Sikora, A.; Kowalski, J. Efficiency of agricultural ecological production in relation to the production orientation of a farm. Inż. Rol. 2012, 16, 412–429. (In Polish) [Google Scholar]
  23. Nachtman, G. Profitability of organic farms against utilized agricultural area. Rocz. Ekonom. Rol. Rozw. Obsz. Wiej. 2013, 100, 182–196. (In Polish) [Google Scholar]
  24. Jezierska-Thole, A.; Gwiaździńska-Goraj, M.; Wiśniewski, Ł. Current Status and Prospects for Organic Agriculture in Poland. Quaest. Geogr. 2017, 36, 23–36. [Google Scholar] [CrossRef][Green Version]
  25. Golinowska, M. Development of Organic Farming; Publishing House of the Wrocław University of Environmental and Life Sciences: Wrocław, Poland, 2013; Available online: https://www.dbc.wroc.pl/Content/23683/PDF/240_Golinowska_M_Rozwoj%20roln%20ekolog_DBC.pdf (accessed on 5 July 2021). (In Polish)
  26. Drygas, M.; Nurzyńska, I.; Bańkowska, K. Characteristics of and Conditions for the Development of Organic Farming in Poland. Opportunities and Barriers; SCHOLAR Scientific Publishing House: Warsaw, Poland, 2019. (In Polish) [Google Scholar]
  27. Brodzińska, K. Organic farming development in Poland in context of environmental conditions and financial support system. Sci. J. Wars. Univ. Life Sci.-SGGW Probl. World Agric. 2010, 10, 12–21. (In Polish) [Google Scholar]
  28. Bujanowicz-Haraś, B. Differentiation degree of environment friendly agriculture’s territorial development in Poland. Ochr. Śr. Zasobów Nat. 2011, 49, 472–482. (In Polish) [Google Scholar]
  29. Golinowska, M. Rozwój Rolnictwa Ekologicznego; Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu: Wrocław, Poland, 2013. [Google Scholar]
  30. Skevas, T.; Skevas, I.; Swinton, S.M. Does Spatial Dependence Affect the Intention to Make Land Available for Bioenergy Crops? J. Agric. Econ. 2018, 69, 393–412. [Google Scholar] [CrossRef][Green Version]
  31. Koutsos, T.M.; Menexes, G.C.; Mamolos, A.P. The Use of Crop Yield Autocorrelation Data as a Sustainable Approach to Adjust Agronomic Inputs. Sustainability 2021, 13, 2362. [Google Scholar] [CrossRef]
  32. European Commission. Available online: https://ec.europa.eu/eurostat/web/nuts/local-administrative-units (accessed on 20 July 2021).
  33. Main Inspectorate of Agricultural and Food Quality Inspection (MIAFQI). Available online: https://www.gov.pl/web/ijhars/rolnictwo-ekologiczne (accessed on 2 July 2021).
  34. Central Statistical Office (CSO). Available online: https://stat.gov.pl/en/ (accessed on 2 July 2021).
  35. European Commission. Available online: https://ec.europa.eu/commission/presscorner/detail/en/MEMO_14_2621 (accessed on 20 July 2021).
  36. Senthilnathan, S. Usefulness of Correlation Analysis. SSRN Electron. J. 2019. [Google Scholar] [CrossRef]
  37. Pélabon, C.; Hilde, C.H.; Einum, S.; Gamelon, M. On the use of the coefficient of variation to quantify and compare trait variation. Evol. Lett. 2020, 4, 180–188. [Google Scholar] [CrossRef]
  38. Trojanowska, M.; Nęcka, K. Selection of the Multiple-Criiater Decision-Making Method for Evaluation of Sustainable Energy Development: A Case Study of Poland. Energies 2020, 13, 6321. [Google Scholar] [CrossRef]
  39. Anselin, L.; Sergio, J. Rey. Modern Spatial Econometrics in Practice, a Guide to Geoda, Geodaspace and Pysal; GeoDa Press: Chicago, IL, USA, 2014. [Google Scholar]
  40. Kukuła, K.; Bogocz, D. Zero Unitarization Method and Its Application in Ranking Research in Agriculture. Econ. Reg. Stud. 2014, 7, 5–13. [Google Scholar]
  41. Fura, B.; Stec, M.; Miś, T. Statistical Evaluation of the Level of Development of Circular Economy in European Union Member Countries. Energies 2020, 13, 6401. [Google Scholar] [CrossRef]
  42. Müller-Frączek, I. Dynamic measurement of complex phenomena in assessing the Europe 2020 strategy effects. Reg. Stat. 2019, 9, 32–53. [Google Scholar] [CrossRef]
  43. Tobler, W. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 1970, 46, 234–240. [Google Scholar] [CrossRef]
  44. Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
  45. Anselin, L.; Arribas-Bel, D. Spatial fixed effects and spatial dependence in a single cross-section. Pap. Reg. Sci. 2013, 92, 3–17. [Google Scholar] [CrossRef]
  46. Fu, W.J.; Zhao, K.L.; Zhang, C.S.; Tunney, H. Using Moran’s I and geostatistics to identify spatial patterns of soil nutrients in two different long-term phosphorus-application plots. J. Plant Nutr. Soil Sci. 2011, 174, 785–798. [Google Scholar] [CrossRef]
  47. Jasiński, J.; Michalska, S.; Śpiewak, R. Organic farming as a factor of local growth. Wieś i Rol. 2014, 4, 145–158. (in Polish). [Google Scholar]
  48. Kondratowicz-Pozorska, J. Evaluation of Benefits from Development of Organic Farming for West Pomeranian Region. Folia Pomeranae Univ. Technol. Stetin. Oecon. 2018, 92, 31–42. [Google Scholar]
  49. Roszkowska, E.; Filipowicz-Chomko, M. Measuring Sustainable Development Using an Extended Hellwig Method: A Case Study of Education. Soc. Indic. Res. 2021, 153, 299–322. [Google Scholar] [CrossRef]
  50. Cho, S.; Chen, Z.; Yen, S.T.; English, B.C. Spatial variation of output-input elasticities: Evidence from Chinese county-level agricultural production data. Pap. Reg. Sci. 2007, 86, 139–157. [Google Scholar] [CrossRef]
  51. Tong, T.; Yu, T.E.; Cho, S.; Jensen, K.; De La Torre Ugarte, D. Evaluating the spatial spillover effects of transportation infrastructure on agricultural output across the United States. J. Transp. Geogr. 2013, 30, 47–55. [Google Scholar] [CrossRef]
  52. Yu, T.; Lambert, D.; Seong Hoon, C.; Koç, A.A.; Bölük, G.; Seung Gyu, K. A spatial analysis of the relationship between agricultural output and input factors in Turkey. New Medit. 2017, 16, 11–17. [Google Scholar]
  53. Rahmann, G.; Reza Ardakani, M.; Bàrberi, P.; Boehm, H.; Canali, S.; Chander, M.; David, W.; Dengel, L.; Erisman, J.; Galvis-Martinez, C.A.; et al. Organic Agriculture 3.0 is innovation with research. Org. Agric. 2016, 7, 169–197. [Google Scholar] [CrossRef][Green Version]
  54. Storm, B.C.; Friedman, M.C.; Murayama, K.; Bjork, R.A. On the transfer of prior tests or study events to subsequent study. J. Exp. Psychol. Learn. Memory Cognit. 2014, 40, 115–124. [Google Scholar] [CrossRef][Green Version]
  55. Lichstein, J.W.; Simons, T.R.; Shriner, S.A.; Franzreb, K.E. Spatial Autocorrelation and Autoregressive Models in Ecology. Ecol. Monogr. 2002, 72, 445–463. [Google Scholar] [CrossRef]
  56. Head Office of Geodesy and Cartography, National Register of Boundaries. Available online: https://www.geoportal.gov.pl/dane/panstwowy-rejestr-granic (accessed on 12 July 2021).
  57. Pudełko, R.; Kozak, M.; Jędrejek, A.; Gałczyńska, M.; Pomianek, B. Regionalisation of unutilised agricultural area in Poland. Pol. J. Soil Sci. 2018, 51, 119. [Google Scholar] [CrossRef][Green Version]
  58. National Agricultural Support Center. Available online: https://www.kowr.gov.pl/biuro-prasowe/aktualnosci/podsumowanie-roku-2020-na-krajowym-rynku-rolnym (accessed on 14 July 2021).
  59. Wojciechowska-Solis, J.; Barska, A. Exploring the Preferences of Consumers’ Organic Products in Aspects of Sustainable Consumption: The Case of the Polish Consumer. Agriculture 2021, 11, 138. [Google Scholar] [CrossRef]
  60. Ministry of Climate and Environment. Survey on Pro-Environmental Awareness and Attitudes of the Residents of Poland. Available online: https://www.gov.pl/web/klimat/badania-swiadomosci-ekologicznej (accessed on 27 July 2021).
  61. European Commission. Organic Farming-Action Plan for the Development of EU Organic Production. Available online: https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/12555-Organic-farming-action-plan-for-the-development-of-EU-org/public-consultation (accessed on 27 July 2021).
  62. The Supreme Audit Office. Supporting the Development of Organic Farming. Available online: https://www.nik.gov.pl/aktualnosci/rolnictwo-ekologiczne.html (accessed on 27 July 2021).
  63. Wiktorowski, K. Development of Rural Areas of West Pomeranian Region against the Background of NRDS 2010-2020 Assumptions. Available online: https://dbc.wroc.pl/Content/73916/Witkorowski_Rozwoj_Obszarow_Wiejskich_Regionu_Zachodniopomorskiego_2011.pdf (accessed on 27 July 2021). (In Polish).
  64. Ossowska, L.; Janiszewska, D.A. The production potential and agricultural development determinants in Zachodniopomorskie voivodeship. Zesz. Nauk. Szk. Gł. Gospod. Wiej. Warsz. Probl. Rol. Świat. 2013, 13, 68–78. (In Polish) [Google Scholar]
  65. Kiryluk-Dryjska, E.; Więckowska, B.; Sadowski, A. Spatial determinants of farmers’ interest in European Union’s pro-investment programs in Poland. PLoS ONE 2021, 16, e0248059. [Google Scholar] [CrossRef]
  66. Kondratowicz-Pozorska, J. Factors of Competitiveness of Ecological Farms in Poland (on the Example of the West Pomeranian Region. Zesz. Nauk. Uniw. Szczec. Współcz. Probl. Ekon. Glob. Lib. Etyka 2015, 10, 89–100. (In Polish) [Google Scholar]
  67. Glabiński, Z.; Koźmiński, C. Wine Tourism as a Factor Contributing to the Local Development of Rural Areas in the West Pomeranian Voivodeship. Folia Tur. Akad. Wych. Fiz. im B Czecha Krakowie 2020, 53, 263–284. (In Polish) [Google Scholar] [CrossRef]
  68. Marszałek, A. Organic farming and organic food as an opportunity for sustainable development of rural areas. Probl. Small Agric. Hold. 2018, 4, 51–68. (In Polish) [Google Scholar] [CrossRef]
  69. Batyk, I. Non-agricultural activities on organic farms in the Warmia and Masuria voivodeship. Infrastruct. Ecol. Rural Areas 2012, 2, 43–52. (In Polish) [Google Scholar]
  70. Grzybowska-Brzezińska, M. Conditions underlying the development of organic farming in the province of Warmia and Mazury. Ann. Pol. Assoc. Agric. Agrobus. Econ. 2020, 22, 113–125. [Google Scholar] [CrossRef]
  71. Poniedziałek, J. Development Prospects: Warmia and Masuria. Available online: http://uwm.edu.pl/socjologia/wp-content/uploads/2014/04/warmia-i-mazury.pdf (accessed on 14 July 2021). (In Polish).
  72. Łojko, M. The labor market in Warmia and Mazury-strategies and local activities. Stud. Ekon. 2016, 286, 56–71. (In Polish) [Google Scholar]
  73. Śliwowska, E.K. Organic agriculture in Podlasie. Rocz. Nauk. Stow. Ekon. Rol. Agrobiz. 2011, 13, 171–175. (In Polish) [Google Scholar]
  74. Siedlecka, A. Conditions and prospects for the development of organic farms in natural valuable areas of the Lubelskie province. Ann. Pol. Assoc. Agric. Econ. Agribus. 2015, 6, 240–245. [Google Scholar]
  75. Antczak, E. Regionally Divergent Patterns in Factors Affecting Municipal Waste Production: The Polish Perspective. Sustainability 2020, 12, 6885. [Google Scholar] [CrossRef]
  76. Hołub-Iwan, J.; Osiadacz, J.; Kucner, A. Strategic Directions of Economic Development Lublin Voivodeship in the Context of the Regional Innovation Strategy. Final Report Version 3.0. Available online: https://www.lubelskie.pl/file/2021/03/Raport-koncowy-Lubelskie.pdf (accessed on 28 July 2021). (In Polish).
  77. Jańczak-Pieniążek, W.; Jarecki, J.; Buczek, D.; Bobrecka-Jamro, M. Development of Organic Farms in the Podkarpackie Voivodeship on the Background of Poland. Fragm. Agron. 2018, 35, 66–76. [Google Scholar]
  78. Dzikuć, M. Factors for the Development of Organic Farming in the Lubuskie Voivodeship. Uniwersytet Ekonomiczny We Wrocławiu, Wrocław. 2015. Available online: https://wir.ue.wroc.pl (accessed on 28 July 2021). (In Polish).
  79. Kułyk, P.; Kaźmierczak-Piwko, L.; Michałowska, M.; Augustowski, Ł. Determining the Prospects for the Development of the Healthy Food Market in the Lubuskie Voivodeship. Available online: http://lubuskie.archiwum.ksow.pl/fileadmin/user_upload/lubuskie/pliki/ekspertyza.pdf (accessed on 28 July 2021). (In Polish).
  80. Gruchelski, M.; Niemczyk, J. The environment and the Strategy for sustainable rural development, agriculture and fisheries 2030®. Postęp. Tech. Przetw. Spoż. 2019, 2, 137–141. (In Polish) [Google Scholar]
  81. Kiryluk-Dryjska, E.; Beba, P.; Poczta, W. Local determinants of the Common Agricultural Policy rural development funds’ distribution in Poland and their spatial implications. J. Rural Stud. 2020, 74, 201. [Google Scholar] [CrossRef]
  82. Sulmicka, M. Trends of Mazovian agriculture development. MAZOWSZE Stud. Reg. 2013, 12, 95–106. (In Polish) [Google Scholar]
  83. Wójcik, M.; Traczyk, A. Specialization of the Łódź voivodeship in plant and livestock production. Acta Univ. Lodz. Folia Geogr. Socio-Oecon. 2016, 26, 97–113. (In Polish) [Google Scholar]
  84. State Water Holding Polish Waters. Available online: https://wody.gov.pl/attachments/article/1646/Raport%20STOP%20SUSZY%202020_Wody%20Polskie.pdf (accessed on 14 July 2021).
  85. Antczak, E. Analysis of Spatial Diversification of Organic Farming Development in the Communes of the Lodzkie Voivodeship. Acta Univ. Lodz. Folia Oecon. 2019, 1, 7–26. (In Polish) [Google Scholar] [CrossRef]
  86. Kociszewski, K. The policy of financial support for organic farming in Poland. Prace Nauk. Uniw. Ekon. We Wrocławiu 2017, 491, 235–243. (In Polish) [Google Scholar] [CrossRef][Green Version]
Diagnostic Variables Av. CV

[%]

AC:

[% or pp]

GM Include

in DSM

Entities
Organic producers [per 1000 entities entered in the national official register] 17.4 303 −39 0.67 *** No
Share of the organic agricultural area [% of the total agricultural area] 3.1 260 −33 0.22 *** No
Plants
Yields of cereals (maize, oats, barley, rye, triticale, wheat) grown for grain (including seed) [kg per capita] 11.1 296 120 0.36 *** Yes
Dry bean harvest [kg per inhabitant] 1.5 368 281 0.35 *** Yes
Harvest of root crops (potatoes, sugar beet and other) [kg per capita] 1.3 495 14 0.20 *** Yes
Harvest of industrial plants (hops, rape, colza, sunflower, soybean, flax, medicinal and spice plants) [kg per capita] 0.6 1322 984 0.01 ** Yes
Harvest of vegetables (brassica, leaf, stem, onion, root, peas, beans, mushrooms) [kg per capita] 2.4 588 267 0.16 *** Yes
Harvest of strawberries and wild strawberries [kg per capita] 0.4 860 53 0.15 *** Yes
Fodder crops (maize, fodder beet, dicotyledonous, grass) [tons per hectare of organic area] 1.5 138 −14 0.42 *** Yes
Harvest of crops from seed plantations [tons per hectare of organic area] 4.9 2423 −99 −0.02 Yes
Harvest from fruit trees and shrubs (fruit and berry crops) [kg per capita] 5 643 260 0.18 *** Yes
Harvest from vineyards [kg per inhabitant] 0.04 2552 1005 0.001 Yes
Harvest of flowers and ornamental plants [kg per capita] 0.001 4876 −100 −0.001 Yes
Animals
The number of cattle kept for meat and milk [per 1000 population] 1.8 583 −5 0.11 *** Yes
The number of pigs (fatteners, sows) [per 1000 population] 0.3 816 −65 0.05 * Yes
Sheep (ewes and others) [per 1000 population] 1 654 −43 0.09 ** Yes
Headcount of goats (mothers and others) [per 1000 population] 0.2 678 −21 0.04 *** Yes
Number of rabbits (female and other) [per 1000 population] 0.4 2822 96 −0.001 Yes
Poultry (broilers, chickens, ducks, turkeys, geese, ostriches) [per 1000 population] 15.9 654 102 0.02 ** Yes
The number of horses (equines) [per 1000 population] 0.04 534 164 0.07 *** Yes
The number of deer (noble and sika) and fallow deer [per 1000 population] 0.2 1740 −76 0.01** Yes
The number of snails [kg per capita] 0.01 6300 100 −0.001 Yes
Products
Production of milk and cream [litres per capita] 1.2 1203 55 0.06 ** Yes
Production of butter, cheese [kg per capita] 220.7 1313 55 0.05 ** Yes
Egg production (including eggs for consumption) [number per capita] 2.3 943 327 0.03 ** Yes
Meat production [kg per capita] 0.001 2659 −29 −0.01 Yes
Honey production [kg per capita] 0.04 4797 1500 −0.01 Yes

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Share and Cite

Antczak, E. Analyzing Spatiotemporal Development of Organic Farming in Poland. Sustainability 2021, 13, 10399. https://doi.org/10.3390/su131810399

Antczak E. Analyzing Spatiotemporal Development of Organic Farming in Poland. Sustainability. 2021; 13(18):10399. https://doi.org/10.3390/su131810399

Chicago/Turabian Style

Antczak, Elżbieta. 2021. “Analyzing Spatiotemporal Development of Organic Farming in Poland” Sustainability 13, no. 18: 10399. https://doi.org/10.3390/su131810399

You are watching: Analyzing Spatiotemporal Development of Organic Farming in Poland. Info created by GBee English Center selection and synthesis along with other related topics.